% Hydrostatic Analysis of TLP % 4/25/03; Meg Brogan and Katie Wasserman % Constants here... g=32.17; % gravity ft/s^2 ro=1.99; % density slugs/ft^3 E_steel=4.177e9; % Youngs MOdulus of Steel lb/ft^2 = 20e10 Pa nu=35; % Specific Volume ft^3/ton % Basic Vessel Parameters here... D_water=2985; % water depth ft B_hull=245; % breadth of hull ft T=85; % Draft of the vessel ft d_cais=66.5; % diameter of caissons ft h_cais=166; % height of caisson ft w_pont=35.5; % width of ponttons ft h_pont=23; % hight of pontoons ft d_tend=2.667; % diameter of tendons, 32in t_tend=.10412; % wall thickness of tendons, 1.25in l_tend=2900; % length of tendons ft n=12; % number of tendons a=(B_hull-d_cais)/2; % arm to center of caissons % Weights W_top=20502; % total topside weight tons (revised #) W_hull=12054; % hull weight tons (revised #) W_tend=7500; % total weight of all 12 tendons tons Wtot=W_top+W_hull+0.5*W_tend; % Total weight of the vessel Wtot_marg=1.15*Wtot % Total weight of the vessel w/ a 15% margin for error m= Wtot*2200/g; % per MIKE T only half the tendon weight is used in these calcs; the 2200 is to get lb from tons % Displacement, Weight and Tension Determinations % Caissons d_sub=T; % submerged depth of caissons ft A_cais=pi*((d_cais^2)/4); % waterplane area per caisson ft^2 V_cais=A_cais*d_sub; % submerged volume per caisson ft^3 Vt_cais=4*V_cais ; % total submerged volume of caissons ft^3 disp_cais=Vt_cais/nu % Total displacement of caisons % Pontoons b_pont=B_hull-d_cais ; % breadth of pontoon ft V_pont=b_pont*w_pont*h_pont; Vt_pont=4*V_pont; disp_pont=Vt_pont/nu % Total displacement of pontoons % Tendons A_tend=pi*(d_tend^2-(d_tend-2*t_tend)^2)/4; %cross sectional area of the tendons V_tend=l_tend*A_tend; Vt_tend=12*V_tend; disp_tend=Vt_tend/nu % total displacement of tendons % Area of the Waterplane Awp=4*A_cais; % TOTAL HULL DISPLACEMENT, BOUYANCY disp_total=disp_cais+disp_pont+disp_tend % tons B_tot=disp_total-Wtot_marg % Total Bouyant force upwards disp minus weight with fudge factor T_tend=B_tot/n % Tensions in each tendon is B over # of tendons % HEAVE analysis % K=Kdynamic+Kstatic K_d=n*A_tend*E_steel/l_tend; % essentially EA/L times n K_s=ro*g*Awp; K_t=K_d+K_s; %Mass determinations m= (W_top+W_hull+0.5*W_tend)*2200/g; % per MIKE T only half the tendon weight is used in these calcs; the 2200 is to get lb from tons ma_c=0.5*(4/3)*pi*(d_cais/2)^3*ro*4; ma_p=4*ro*V_pont; ma_t=ma_c+ma_p; % Total added mass of the pontoon and caisson % Natural frequency of the Vessel in heave: w_n3=sqrt(K_t/(m+ma_t)); T_n3=(2*pi)/w_n3; % PITCH/ROLL Analysis %C=Cdynamic+Cstatic a=b_pont/2-d_cais/2; C_d=6*2*(b_pont/2-d_cais/2)^2*E_steel*A_tend/l_tend; % 6 represents the number of PAIRS of tendons C_s=2*(b_pont/2-d_cais/2)^2*g*ro*Awp; C_t=C_d+C_s; %Mass and Inertia Determinations y=Vt_cais/Vt_pont; m_hull=W_hull*2200/g; m_p=m_hull/(1+y); m_c=m_hull-m_p; r_ss=(3/8)*B_hull; % Gross assumptions made here on the radius of gyration for the SuperStructure, should be refined I_ss=(0.5*W_top*2200/g)*r_ss^2; % assumed that superstructure is roughly 1/2 of the total topside weight r_deck=(1/4)*B_hull; % Used conventional assumption about r I_deck=(0.5*W_top*2200/g)*r_deck^2; r_cais=d_cais/2; % all the caisson weight is at r because its hollow, therefore r=d/2 I_cais=4*(m_c*2200/g)*r_cais^2; r_pont1=(1/4)*b_pont; I_pont1=2*(m_p*2200/g)*r_pont1^2; r_pont2=(1/4)*d_cais; %this accounts for the pontoons which are shielded by the caissons I_pont2=2*(m_p*2200/g)*r_pont2^2; % ALL these inertias are in the units slug-ft^2 PAT_ss=(0.5*W_top*2200/g)*166.5^2; % the 166.5 comes from estimates of vcg... these should DEFINATELY be revised PAT_deck=(0.5*W_top*2200/g)*101^2; % ditto PAT_cais=4*(m_c*2200/g)*2^2; PAT_pont=4*(m_p*2200/g)*73.5^2; I_tot=I_ss+I_deck+I_cais+I_pont1+I_pont2+PAT_ss+PAT_deck+PAT_cais+PAT_pont; %total mass moment of inertia of vessel, slug-ft^2 %Added Inertia Determinations Ia_cais=(1/2)*(4/3)*pi*ro*(a^2)*((d_cais/2)^2); Iat_cais=Ia_cais*4; % Total added mass moment of inertia of the caissons Ia_pont1=(1/12)*h_pont*(b_pont^2)*ro*2; % added moment from two of the pontoons in same direction Ia_pont2=(h_pont^2)*d_cais*ro*(a^2)*2; % added moment from the hidden two pontoons in the other direction Ia_tot=Iat_cais+Ia_pont1+Ia_pont2; % Natural Frequnecy in pitch/roll wn_5=sqrt(C_t/(I_tot+Ia_tot)); Tn_5=(2*pi)/wn_5; % SAMPLE OUTPUTS: %disp_total =4.7031e+04 %B_tot =6.2059e+03 %T_tend =517.1593 %w_n3 =1.9217 %T_n3 =3.2697 %wn_5 =0.1670 %Tn_5 =37.6256