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Abstract
Crises, such as currency attacks, bank runs and riots, can be described as times of

non-fundamental volatility. We argue that crises are also times when endogenous sources
of information are closely monitored and thus an important part of the phenomena. We
study the role of endogenous information in generating non-fundamental volatility by
introducing a financial market in a coordination game where agents have heterogeneous
information about the fundamental. The equilibrium price aggregates information with-
out restoring common knowledge. In contrast to the case with exogenous information,
we find that uniqueness may not be obtained as a perturbation from common knowledge:
multiplicity is ensured when individuals observe fundamentals with small idiosyncratic
noise. Moreover, multiplicity may also emerge in the financial price itself. When the
equilibrium is unique, it becomes more sensitive to non-fundamental shocks as noise
is reduced. Similar results are obtained when agents observe a signal of aggregate ac-
tivity instead of a financial price, stressing that the main mechanism for our results is
information aggregation.

JEL Codes: D8, E5, F3, G1.

Keywords: Multiple equilibria, coordination, global games, speculative attacks, currency
crises, bank runs, financial crashes, rational expectations.

∗For useful comments and suggestions we thank Daron Acemoglu, Fernando Alvarez, Manuel Amador, Gadi
Barlevy, V.V. Chari, Harold Cole, Christian Hellwig, Patrick Kehoe, Stephen Morris, Alessandro Pavan, José
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1 Introduction

It’s a love-hate relationship, economists are at once fascinated and uncomfortable with multiple

equilibria. On the one hand, economic and political crises involve large and abrupt changes

in outcomes, but often lack obvious comparable changes in fundamentals. Many attribute

an important role to more or less arbitrary shifts in ‘market sentiments’ or ‘animal spirits’,

and models with multiple equilibria formalize these ideas. On the other hand, models with

multiple equilibria can also be viewed as incomplete theories, which ultimately should be

extended along some dimension to resolve the indeterminacy.

The first view is represented by a large empirical and theoretical literature. On the empir-

ical side, Kaminsky (1999), for example, documents that the likelihood of a crisis is affected

by observable fundamentals, but that a significant amount of volatility remains unexplained –

crises are largely unpredictable. On the theoretical side, models featuring multiple equilibria

attempt to address such non-fundamental volatility. Bank runs, currency attacks, debt crises,

financial crashes, riots and political regime changes are modeled as a coordination game: at-

tacking a regime – such as a currency peg or the banking system – is worthwhile if and only

if enough agents are also expected to attack.1

Morris and Shin (1998, 2000, 2003), building on Carlsson and van Damme (1993), con-

tribute to the second view by showing that a unique equilibrium survives in such coordination

games when individuals observe fundamentals with small enough private noise. The result

is most striking when seen as a perturbation around the original common-knowledge model,

which is ridden with equilibria. As the noise in private information vanishes, agents become

perfectly informed, yet the equilibrium outcome is uniquely determined. Most importantly,

their contribution highlights the importance of the information structure in environments with

complementarities.

The aim of this paper is to understand the role of information in crises. We focus on two

distinct forms of non-fundamental volatility: the existence of multiple equilibria and the sen-

sitivity of a unique equilibrium to non-fundamental disturbances. We argue that endogenizing

public information is crucial for answering these questions.

Information is typically taken as exogenous in coordination models, but is largely endoge-

nous in most situations of interest. Financial prices and macroeconomic indicators convey

information regarding others’ actions and their beliefs about the underlying fundamentals.

Such indicators are monitored intensely during times of crises and appear to be an important

part of the phenomena. As an example, consider the Argentine 2001-2002 crisis, which in-

cluded devaluation of the peso, default on sovereign debt, and suspension of bank payments.

1See, for example, Diamond and Dybvig (1983), Obstfeld (1986, 1996), Velasco (1996), Calvo (1988),
Cooper and John (1988), Cole and Kehoe (1996). Cooper (1998) provides an excellent review.
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Leading up to the crisis throughout 2001, the peso-forward rate and bank deposits deterio-

rated steadily. These variables, and others, were widely reported by news media and investor

reports and closely watched by people making crucial economic decisions.

These observations lead us to introduce endogenous sources of public information in a

coordination game. In our baseline model, individuals observe their private signals and the

price of a financial asset, whose dividend depends on the underlying fundamentals or the

outcome of the coordination game. The rational-expectations equilibrium price aggregates

disperse private information, but avoids perfect revelation due to noise in the aggregation

process generated by unobservable supply shocks, as in Grossman and Stiglitz (1976).2

The main insight to emerge is that the precision of endogenous public information increases

with the precision of exogenous private information. When private signals are more precise,

individuals’ asset demands are more sensitive to their information. As a result, the equilibrium

price reacts relatively more to fundamental than to non-fundamental variables, thus conveying

more precise public information.

This result has important implications for the determinacy of equilibria, as a horse-race

between private and public information emerges. The direct effect of an increase in the

precision of private information is that individuals find it harder to coordinate, as each relies

more on her own distinct information. However, the resulting increase in the precision of

endogenous public information facilitates coordination by helping individuals better forecast

each others’ actions. This indirect effect typically dominates and reverses the limit result:

multiplicity is ensured when individuals observe fundamentals with small enough private noise.

Uniqueness therefore cannot be attained as a small perturbation around common knowl-

edge. To illustrate this point, Figure 1 displays the regions of uniqueness and multiplicity in

the space of exogenous levels of public and private noise, σε and σx, respectively. Multiplicity

is ensured when either noise is sufficiently small. In this sense, public and private noise have

symmetric effects.

Interestingly, multiplicity may emerge not only in the regime outcome but also in the

asset price. This occurs when the asset’s dividend depends on the coordination game. Mul-

tiple equilibrium prices are then sustained by different self-fulfilling expectations about the

dividend, which in turn are facilitated by the information conveyed by the price.

In regions where the equilibrium is unique, we perform comparative statics. We find that

a reduction in exogenous noise, by helping agents better align their choices, may increase the

sensitivity of the regime outcome to non-fundamental disturbances. When the dividend is

endogenous, this may also increase volatility in the financial price. Thus, lower noise may

2Atkeson (2000) first pointed out that perfectly-revealing asset markets could restore common knowledge.
By introducing noise in the aggregation process, we ensure that none of our results are driven by restoring
common knowledge.
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Figure 1: σx measures the exogenous noise in private information and σε the exogenous public
noise in the aggregation of information.

increase volatility by either introducing multiplicity or making the unique equilibrium more

sensitive to non-fundamental shocks.

Motivated by bank run and riot applications, we also consider a model in which individuals

do not trade a financial asset but instead directly observe a noisy public signal of the action of

others. This model introduces endogenous public information in the Morris-Shin framework

with minimal modifications. It also brings a main element of herding models, the observation

of other players’ actions, into coordination games. Our results on equilibrium multiplicity

carry over here, illustrating that the key mechanism is information aggregation.

Related Literature. Our main interest is the role of information and coordination in

non-fundamental volatility. Chari and Kehoe (2003) also focus on non-fundamental volatility

as the distinct feature of crises, but within the context of a herding model. The model in

Section 4, which allows individuals to observe signals of others actions, brings coordination

games and herding models closer together.

Our analysis builds on Morris and Shin (1998, 2000, 2003), underscoring their general

theme that the information structure is crucial in coordination games. Our focus is on en-

dogenous sources of public information, such as financial prices and other macroeconomic

indicators that aggregate private information dispersed in the economy. Atkeson (2000), in

his discussion of Morris and Shin (2000), was the first to highlight the potential role of fi-

nancial prices as endogenous sources of public information. Angeletos, Hellwig and Pavan

(2003, 2004) also endogenize information, but in different ways: they examine the signaling

and coordinating effects of policy, and the dynamics of information in a dynamic global game.

Closely related is Hellwig, Mukherji and Tsyvinski (2004), who consider a currency-crises
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model in which financial prices directly affect the coordination outcome. In particular, they

focus on how the determinacy of equilibria depends on whether the central bank’s decision

to devalue is triggered by large reserve losses or high interest rates. In their model, multiple

equilibria also survive for small levels of noise.

Tarashev (2003) also endogenizes interest rates in currency crises, but in a model where

the equilibrium is always unique. Dasgupta (2003) introduces signals of others’ actions in

an investment game, but assumes that these signals are entirely private, instead of public as

in our paper. Morris and Shin (2002) and Angeletos and Pavan (2004), on the other hand,

consider the volatility and welfare effects of exogenous public information in a class of models

where complementarities are weak enough that the equilibrium is always unique.

Finally, this paper contributes to the rational-expectations literature by introducing a

coordinating role for financial prices. In rational expectations equilibria the payoff of an

agent is typically independent of the actions of other agents given the price. Thus, the

equilibrium price only provides information regarding the exogenous dividend. In contrast,

in our framework the price also helps agents to predict each others’ actions and align their

choices beyond the financial market. This novel coordinating role is crucial for our results

regarding price multiplicity and volatility.3

Section 2 introduces the basic model and reviews the exogenous information benchmark.

Section 3 incorporates an asset market and examines the determinacy of equilibria. Section

4 considers comparative statics in regions with a unique equilibrium. Section 5 studies the

model with direct signals on the actions of others. Section 6 concludes.

2 The Basic Model: Exogenous Information

Before introducing a financial price or other endogenous public signals, we briefly review the

backbone of our model with exogenous information, as in Morris and Shin (1999, 2000).

Actions and Payoffs. There is a status quo and a measure-one continuum of agents,

indexed by i ∈ [0, 1]. Each agent i can choose between two actions, either attack the status

quo ai = 1, or not attack ai = 0. The payoff from not attacking is normalized to zero. The

payoff from attacking is 1 − c > 0 if the status quo is abandoned and −c otherwise, where

c ∈ (0, 1) parametrizes the cost of attacking. The status quo, in turn, is abandoned if and only

if A > θ, where A denotes the mass of agents attacking and θ is the exogenous fundamental

3Barlevy and Veronessi (2004) consider a Grossman-Stiglitz environment that admits multiple equilibria,
but the source of multiplicity there is entirely different from ours. In their model, the dividend is exogenous,
so the price does not play a coordinating role. Instead, multiplicity emerges from the non-linearity of the
inference problem faced by uninformed traders when interacting with informed and less risk-averse agents.
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representing the strength of the status quo. It follows that the payoff of agent i is

U(ai, A, θ) = ai(R (A, θ)− c), (1)

where R (A, θ) denotes the regime outcome, with R (A, θ) = 1 if A > θ and R (A, θ) = 0

otherwise.

The key property of the payoff structure is a coordination motive due to the strategic

complementarity: U (1, A, θ)−U (0, A, θ) increases with A, so the incentive to attack increases

with the mass of agents attacking. If θ were commonly observed by all agents, both A = 1

and A = 0 are an equilibrium whenever θ ∈ (θ, θ] ≡ (0, 1]. This interval represents the set of

critical fundamentals over which the regime outcome depends on the size of the attack.

Interpretations. In models of self-fulfilling currency crises, as in Obstfeld (1986, 1996) and

Morris and Shin (1998), the central bank is forced to abandon its peg when a sufficiently large

group of speculators attacks the currency; θ then parametrizes the amount of foreign reserves

or the ability and willingness of the central bank to maintain its peg. In models of bank

runs, such as Goldstein and Pauzner (2000) and Rochet and Vives (2004), a regime change

occurs when a large enough number of depositors decide to withdraw their deposits, forcing

the banking system to suspend payments. Another possible interpretation of the model is

an economy with investment complementarities, as in Cooper and John (1988) and Dasgupta

(2003).4

Information. Following Morris-Shin, suppose θ is not common knowledge. In the beginning

of the game, nature draws θ from a given distribution, which constitutes the agents’ common

prior about θ. For simplicity, the prior is taken to be the improper uniform over the entire

real line. Agent i then receives a private signal xi = θ + σxξi, with σx > 0 and ξi ∼ N (0, 1)

is independent of θ, and independently distributed across agents. Agents also observe an

exogenous public signal z = θ + σzv, where σz > 0 and v ∼ N (0, 1) is common noise,

independent of both θ and ξ.5 The information structure is parametrized by the standard

deviations σx and σz; or, equivalently, by αx = σ−2
x and αz = σ−2

z , the precisions of private

and public information.

Equilibrium. Throughout the paper, we focus on monotone equilibria defined as perfect

Bayesian equilibria such that, for given a realization z of the public signal, an agent attacks

if and only if the realization x of his private signal is less than some threshold x∗(z).6

4Other applications include debt crises, financial crashes, and riots (Cole and Kehoe, 1996; Atkeson, 2000;
Morris and Shin, 2004a, 2004b; Corsetti, Guimaraes, and Roubini, 2004).

5Normality makes the analysis of the effects of public information tractable (see Morris and Shin, 1999,
2000, 2003).

6Our main results concerning multiple equilibria are obtained even within this restricted class. Moreover,
in the case of exogenous information, when monotone equilibria are unique it is known that there are no
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Figure 2: σx and σz parameterize the noise in private and public information; uniqueness is
ensured for σx small enough.

Proposition 1 (Morris-Shin) In the game with exogenous information, the equilibrium is

unique if and only if 0 < σx ≤ σ2
z

√
2π.

Proof. See Appendix.

Figure 2 depicts the regions of (σx, σz) for which the equilibrium is unique. For any positive

σz, uniqueness in ensured by a sufficiently small positive σx. The key intuition behind this

result is that private information anchors individual behavior and limits the ability to forecast

each others actions, which is required to coordinate on multiple equilibria.

The higher the precision of private information, for given precision of public information,

the more heavily individuals condition their actions on it. Since private information is diverse

this makes it more difficult for individuals to predict the actions of others. When σx is

sufficiently small, relative to σz, this effect is strong enough and the ability to coordinate on

multiple courses of action breaks down.

Moreover, as σx → 0 individuals cease to condition their actions on the public signal so

the equilibrium dependence on the common noise ε vanishes.

Corollary 1 In the limit as σx → 0, there is a unique equilibrium in which R (θ, z) → 1 if

θ < θ̂ and R (θ, z) → 0 if θ > θ̂, where θ̂ = 1− c.

This limit illustrates a sharp discontinuity of the equilibrium set around σx = 0 : a small

perturbation away from perfect information suffices to obtain a unique equilibrium. Moreover,

non-monotone equilibria.
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it implies that crises, defined as situations displaying high non-fundamental volatility, cannot

be addressed in the limit as σx → 0.

3 Endogenous Information I: Financial Prices

The results above presume that the precision of public information remains invariant while

varying the precision of private information. We argue that this is unlikely to be the case

when public information is endogenous through financial prices.

To investigate the role of prices, we introduce a financial market where agents trade an

asset prior to playing the coordination game. Because the dividend is a function of θ or A,

the the equilibrium price will convey information that is valuable in the coordination game.

3.1 Asset market

As before, nature draws θ from an improper uniform distribution over the real line and each

agent receives the exogenous private signal xi = θ + σxξi. We avoid direct payoff linkages

between the financial market and the coordination game to isolate and focus on information

aggregation. Agents can be seen as interacting in two separate stages.

In the first stage agents trade over a risky asset with dividend f = f (θ, A) at price p. We

assume a constant absolute risk aversion utility function over consumption generated from

this portfolio choice. Thus, utility is −e−γci/γ for γ > 0, where consumption is given by

ci = w − pki + fki, and ki denotes the investment in the asset.

The net supply of the asset is uncertain and not observed, given by Ks (ε) = σεε, where

σε > 0 and ε ∼ N (0, 1) and independent of θ and ξi. As in Grossman and Stiglitz (1976),

the role of the unobserved shock ε is to introduce noise in the information revealed by the

market-clearing price. In this way, σε parameterizes the exogenous noise in the aggregation

process.

The second stage is essentially the same as the benchmark model of the previous section:

agents choose whether to attack or not; the status quo is abandoned if and only if the mass

of agents attacking, A, exceeds θ; and the payoff of the agent from this stage is U(ai, A, θ) =

ai (R (A, θ)− c). The only difference is that agents now observe the price that cleared the

financial market in stage 1. The regime outcome, the asset’s dividend, and the payoffs from

both stages are realized at the end of stage 2.

Individual asset demands and attack decisions are functions of x and p, the realizations of

the private signal and the price. The corresponding aggregates are then functions of θ and p.

We define an equilibrium as follows.
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Definition 1 An equilibrium is a price function, P (θ, ε), individual strategies for investment

and attacking, k(x, p) and a(x, p), and their corresponding aggregates, K(θ, p) and A(θ, p),

such that:

k(x, p) ∈ arg max
k∈R

E [ V ((f − p) k) | x, p ] (2)

K(θ, p) =

∫

x

k(x, p)φ
(

x−θ
σx

)
dx (3)

K (θ, P (θ, ε)) = Ks (ε) (4)

a(x, p) ∈ arg max
a∈[0,1]

E [ U(a,A(θ, p), θ) | x, p ] (5)

A(θ, p) =

∫

x

a(x, p)φ
(

x−θ
σx

)
dx (6)

Let R (θ, ε) = R (θ, A (θ, P (θ, ε))) denote the equilibrium regime outcome.

Equations (2)-(4) define a rational-expectations competitive equilibrium for stage 1. The

price must clears the asset market (4), where demand is determined by individuals that con-

dition on all available information as in (2), including anything inferable from the price real-

ization p = P (θ, ε). Equations (5)-(6) define a perfect Bayesian equilibrium for stage 2.

3.2 Exogenous dividend

We consider first the case where the dividend depends only on the exogenous fundamental

and f = θ. Following Grossman and Stiglitz (1976), we focus on the unique equilibrium in

the asset market with a linear price function that is not perfectly revealing.7

Observing the price realization is then equivalent to observing a Normal signal with some

precision αp ≥ 0. The posterior of θ conditional on x and p is then Normal with mean

δx + (1− δ)p and precision α, where δ = αx/α and α = αx + αp. Individual’s asset demands

are

k(x, p) =
E[f |x, p]− p

γVar[f |x, p]
=

δα

γ
(x− p) , (7)

Aggregate demand is then K(θ, p) = (δα/γ) (θ − p) and market clearing, K(θ, p) = Ks (ε) =

σεε, implies

P (θ, ε) = θ − σpε, (8)

where σp = (δα/γ)−1σε. This verifies the linear price function guess and using δ = αx/α and

α = αx + σ−2
p , we obtain

σp = γσεσ
2
x. (9)

7In Grossman and Stiglitz’s setup, the perfectly revelaing equilibrium seems implausible, and it is not
known whether other non-linear equilibrium price functions exist.
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Figure 3: With endogenous public information, as σx decreases, σz also decreases; multiplicity
is therefore ensured for sufficiently small σx.

Thus, the precision of public information increases with the precision of private information.

This is the key observation of the paper and has important implications for the determination

and characterization of equilibria in the coordination game.

Stage 2 is then equivalent to the benchmark model of Section 2, with the price p playing

the role of the public signal z.

Proposition 2 In the asset economy with exogenous dividend f = θ, there are multiple equi-

libria if σ2
εσ

3
x < γ2(2π)−1/2.

Proof. Follows from equation (9) and Proposition 1.

In Proposition 1 the noise in public information, σz, was fixed, so a sufficiently low σx

ensured uniqueness. In contrast, here better private information improves public information,

and at a fast enough rate to ensure multiplicity. The result is illustrated in Figure 3. In

contrast to Figure 2, as σx decreases, σz also decreases, eventually entering the multiplicity

region.

An immediate implication is that uniqueness can no longer be seen as a small perturbation

away from common knowledge: multiplicity is ensured when either σx or σε are small, as

illustrated in Figure 1. Indeed, both extreme common-knowledge outcomes can be recovered

as either noise vanishes.

Corollary 2 Consider the limit as σx → 0 for given σε, or the limit as σε → 0 for given σx.
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There exists an equilibrium in which R (θ, ε) → 0 whenever θ ∈ (θ, θ), as well as an equilibrium

in which R (θ, ε) → 1 whenever θ ∈ (θ, θ). In every equilibrium, P (θ, ε) → θ for all (θ, ε).

3.3 Endogenous dividend

We now consider the case where the asset’s dividend is endogenously determined by the

coordination game and f = f (A). To preserve normality of the information structure we take

f (A) = −Φ−1(A).

As was the case with an exogenous dividend, the precision of the information conveyed en-

dogenously by the price increases with the precision of exogenous private information. Again,

this guarantees multiplicity for small levels of noise. A novel implication here is that multi-

plicity also emerges in the financial price.

The reason for this is the feedback between the asset market and the coordination game.

As before, the price conveys information valuable for the coordination game. But now the

outcome of the coordination game determines the dividend of the asset.

Proposition 3 In the asset economy with endogenous dividend f = f (A), there are multiple

equilibria if σ2
εσ

5
x < γ2(2π)−1/2. Multiplicity then emerges in both the regime outcome, R (θ, ε) ,

and the price function, P (θ, ε) .

Proof. In monotone equilibria agents attack if and only if their private signal is below some

threshold x∗ (p) . Then A (θ, p) = Φ
(√

αx(x
∗ (p)− θ)

)
and the realized dividend is

f =
√

αx(θ − x∗ (p)). (10)

Note that since p is observed agents can calculate p̃ = p/
√

αx + x∗ (p), which represents the

price of an asset that pays f̃ = f/
√

αx + x∗ (p) = θ. We focus on equilibria with a one-to-one

mapping between p and p̃, so that the observation of p is equivalent to the observation of p̃.

We guess and verify that the posterior for θ is Normal with mean δx + (1− δ) p̃ and

precision α, where δ = αx/α and α = αx + αp, for some αp = σ−2
p ≥ 0. The asset demand is

then given by

k(x, p) =
E[f |x, p]− p

γVar[f |x, p]
=

δα

γ̃
(x− p̃) ,

where γ̃ = γ
√

αx, and market clearing gives

p̃ = θ − σpε, (11)
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with σp = (δα/γ̃)−1σε. Our guess for the posterior for θ is then verified with

σp = γσεσx. (12)

The precision of public information once again increases with the precision of private infor-

mation. The thresholds θ∗(p) and x∗ (p) then solve the analogues of (22) and (23) from the

benchmark model once we replace z with p̃ = p/
√

αx + x∗(p) and αz with αp. This gives a

unique solution for θ∗(p) and x∗ (p) :

θ∗(p) = Φ
(√

αx

αx+αp
Φ−1 (1− c)− αp

αx+αp
p
)

and x∗(p) = θ∗(p) + 1√
αx

Φ−1 (θ∗(p)) (13)

To complete the analysis, we determine the mapping between p and p̃, which gives the

equilibrium price function p = P (θ, ε) . Since x∗ (p) is uniquely determined, the aggregate

demand K (θ, p) =
(√

αx/γ
) [

θ − p/
√

αx − x∗(p)
]

is also uniquely determined. Moreover,

K(θ, p) is continuous in p, with limp→−∞K(θ, p) = ∞ and limp→+∞ K(θ, p) = −∞. Thus, the

market clearing condition K (θ, p) = Ks (ε) , or equivalently p̃ = p/
√

αx + x∗(p), necessarily

admits a solution in p. However, since a component of the dividend x∗ (p) is decreasing in

p, the demand K(θ, p) need not be monotonic in p. Thus, the equilibrium price need not be

unique. Indeed,

sign

{
∂K (θ, p)

∂p

}
= −sign

{√
αx

αp

− φ
(
Φ−1(θ∗)

)}
,

so that K (θ, p) is everywhere decreasing in p if and only if
√

αx/αp ≥
√

2π, or equivalently

σ2
εσ

3
x ≥ γ2/

√
2π. When instead, σ2

εσ
3
x < γ2/

√
2π there is a non-empty interval (p̃1, p̃2) where

p̃ = p/
√

αx + x∗(p) admits three solutions for p, so there are multiple equilibrium price

functions.

When the dividend was exogenous and given by f = θ the price played the role of a public

signal of the fundamental θ. As a result, multiplicity emerged solely in the coordination stage,

not in the asset market. In contrast, here the asset’s dividend depends on the size of the attack,

so its price acts as an anticipatory signal of A. Multiple equilibria in the coordination stage

then feed back into multiple equilibrium prices.

In equilibrium, a higher price realization makes agents more inclined to attack, raising

the dividend directly. This effect may make the asset demands non-monotonic in p over

some region and give rise to multiple market-clearing prices. Since multiplicity occurs for low

values of σx and σε, a potential form of non-fundamental price volatility, occurs somewhat

paradoxically, in situations of low exogenous noise.

Note that multiplicity emerges in the price and regime outcome, but not in individual

strategies given the price realization. In this sense, price multiplicity is crucial for the equi-
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librium multiplicity. To gain some intuition for this result, consider the common-knowledge

case with σx = 0. Then x = θ and p = f = −Φ−1 (A), so it is optimal to attack if and only if

A ≥ θ, or equivalently x ≤ Φ(−p). Thus, equilibrium strategies are uniquely determined even

though the equilibrium price function P (θ, ε) and aggregate attack A(θ, ε) are not. Indeed, for

every θ ∈ (θ, θ), both (p,A) = (∞, 0) and (p,A) = (−∞, 1) are consistent with an equilibrium.

Both extreme common-knowledge outcomes are approached as either noise vanishes.

Corollary 3 Consider the limit as σx → 0 for given σε, or the limit as σε → 0 for given σx.

There is an equilibrium in which R(θ, ε) → 1 and P (θ, ε) → −∞ whenever θ ∈ (θ, θ), as well

as an equilibrium in which R(θ, ε) → 1 and P (θ, ε) → −∞ whenever θ ∈ (θ, θ).

Our model with exogenous dividend purposely limits the interactions between the coordi-

nation and asset market to focus on information aggregation. The endogenous dividend case

features a additional feedback from the coordination game to the asset market, which is the

source of multiplicity in the asset price. Neither case however allows for the asset price to have

a direct payoff effect in the coordination game. Hellwig, Mukherji, and Tsyvinski (2004), on

the other hand, consider a currency-crises model in which the coordination game is embedded

in the financial market and the price directly affects the agent’s payoff from attacking and the

central bank’s devaluation decision. In their case, multiplicity is also ensured for small levels

of noise.

3.4 Discussion

Our key result is that the precision of endogenous public information increases with the

precision of exogenous private information. This feature is likely to be very robust and carries

with it the important implication that lower values of private noise σx do not necessarily

contribute towards uniqueness.

The simplest model featuring information aggregation, without financial prices, selects N

individuals at random to be on a ‘talk show’. Those on the show broadcast their signals to

the rest of the population. This amounts to generating a public signal z = θ + σzv with

σz = σx/
√

N . In this case, public communication links the precision of private and public

information in such a way that equilibrium multiplicity is ensured for σx small enough.

In the model of the next section, there is neither a financial price nor direct communication,

but a form of social learning. Once again, multiplicity is ensured for σx small enough.

In all these cases, a smaller σx facilitates multiplicity because the precision of public infor-

mation increases at a faster rate than the square root of the precision of private information.

We next show, however, that this property need not obtain in some variations of our asset-

market model that introduce additional noise in the aggregation process.
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Consider, in particular, an extension where the dividend is not perfectly correlated with the

fundamental or the coordination outcome: f = θ + η or f = f (A)+ η, where η ∼ N (
0, σ2

η

)
is

independent of (θ, ξ, ε). This extension is treated formally in Proposition A1 in the Appendix;

here we discuss the main findings.

The equilibrium price continues to aggregate information, but the risk introduced by η

limits the sensitivity of asset demands to changes in expected excess returns. With exogenous

dividend, this effect implies a upper bound on the precision of the information revealed by

the price. As a result, for any given (ση, σε) > 0, multiplicity holds for an intermediate range

of σx, but not in the limit as σx → 0. With endogenous dividend, however, the sensitivity

of the dividend itself to θ increases with the precision of private information, overturning the

previous dampening effect. As a result, multiplicity now obtains even in the limit as σx → 0.

Finally, with either endogenous or endogenous dividend, less noise in the form of smaller

σε or ση contributes to multiplicity. In particular, for any (σx, σε) for which multiplicity was

obtained when ση = 0, multiplicity is again ensured as long as ση is positive but small enough.

We conclude that, while some extensions may qualify the limit result for σx, they are

unlikely to modify our main conclusion that endogenous public information is important for

understanding the determinacy of equilibria and the level of non-fundamental volatility.

4 Endogenous Information II: Signal on Aggregate Ac-

tions

In this Section, we remove the financial market and examine instead situations where infor-

mation originates within the coordination game itself: agents observe a public signal of the

aggregate attack. The resulting model bridges a gap between coordination and herding models

that stress the observation of other player’s actions.

We start with a version that requires a minimal modification of the exogenous-information

benchmark: agents move simultaneously while observing a public signal about the contempo-

raneous aggregate attack. In this case, our equilibrium concept is a hybrid of game theoretic

and rational-expectations concepts. We then show that similar results obtain in a sequential

version of the model that allows for an equilibrium concept that is entirely game-theoretic.

13



4.1 Simultaneous moves

The model is similar to the benchmark model from Section 2. The prior and private signals

are as before, but the public signal z is replaced with

y = s(A, ε)

where s : [0, 1]× R→ R and ε is noise independent of θ and ξ. To preserve Normality of the

information structure and obtain closed-form solution, we take s(A, ε) = Φ−1(A) + σεε and

ε ∼ N (0, 1).8 The exogenous information structure is parameterized by the pair of standard

deviations (σx, σε).

Since the information agents posses include a signal of contemporaneous actions, our equi-

librium concept, just as in the asset market model of Section 3, is a hybrid of a rational

expectations and perfect Bayesian equilibrium.

Definition 2 An equilibrium consists of an endogenous signal y = Y (θ, ε), an individual

attack strategy a(x, y), and an aggregate attack A(θ, y), that satisfy:

a(x, y) ∈ arg max
a∈[0,1]

E [ U(a,A(θ, y), θ) | x, y ] (14)

A(θ, y) =

∫

x

a(x, y)φ
(

x−θ
σx

)
dx (15)

y = s(A(θ, y), ε) (16)

for all (θ, ε, x, y) ∈ R4.

Equation (14) requires the attack choice to be optimal given all available information,

including the realized signal y of the aggregate attack. The fixed point in (16) is the rational-

expectations element, that requires the signal y to be generated by individual actions that

are, in turn, contingent on y.

In monotone equilibria, an agent attacks if and only if x ≤ x∗(y) and the status quo is

abandoned if and only if θ ≤ θ∗(y), so an equilibrium is identified with a triplet of functions

x∗, θ∗, and Y . As before, we focus on equilibria that preserve Normality of the information

structure.9

As shown in the appendix, the equilibrium analysis is very similar to that of the endogenous

dividend model from Section 3.3. Here agents receive a direct signal on A, while there the price

was an indirect signal of A, but, in equilibrium, both y and p convey the same information.

8This convenient specification was introduced by Dasgupta (2003) in a different environment.
9Formally, we consider equilibria such that G (Y (θ, ε)) = λ1θ + λ2ε for some strictly monotone function G

and non-zero coefficients λ1, λ2.
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Indeed, the noise in the endogenous public information generated by y turns out to be

σy = σxσε,

implying that multiplicity once again survives for small levels of noise. Moreover, when

multiplicity arises, it is with respect to aggregate outcomes and not with respect to individual

behavior.

Proposition 4 An equilibrium exists for all (σx, σε) and is unique if and only if σ2
εσx ≥

1/
√

2π. If σ2
εσx < 1/

√
2π, the equilibrium strategy a remains unique, but there are multiple

signal functions Y .

Proof. See Appendix.

Finally, common-knowledge outcomes once again obtain as either noise vanishes. On the

other hand, the Morris-Shin limit is obtained as σε → ∞, since y then becomes completely

uninformative.

4.2 Sequential moves

The model above assumed that agents can condition their decision to attack on a noisy

indicator of contemporaneous aggregate behavior. Here we extend the model so that nobody

has information about contemporaneous actions of others. This allows us to use standard

game-theoretic equilibrium concepts.

The population is divided into two groups, ‘early’ and ‘late’ agents. Neither group observes

contemporaneous activity. Early agents move first, on the basis of their private information

alone. Late agents move second, on the basis of their private information as well as a noisy

public signal about the aggregate actions of early agents.

Let µ ∈ (0, 1) denote the fraction of early agents, and A1 and A2 be the fraction of early

and late agents that attack, respectively. Late agents observe

y1 = Φ−1(A1) + ε, (17)

where ε ∼ N (0, σ2
ε) is independent of θ and ξ. The regime changes if and only if the aggregate

attack, A = µA1 + (1− µ)A2, exceeds θ.

We look for monotone perfect Bayesian equilibria, which are summarized by is a scalar

x∗1 ∈ R and a pair of functions x∗2 : R→ R and θ∗ : R → (0, 1) such that: an early agent

attacks if and only if x ≤ x∗1; a late agent attacks if and only if x ≤ x∗2(y1); and the regime is

abandoned if and only if θ ≤ θ∗(y1).
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The aggregate attack of early agents is then A1 (θ) = Φ
(√

αx [x∗1 − θ]
)

implying y1 =

Φ−1 (A1 (θ))+ ε =
√

αx [x∗1 − θ] + ε. In equilibrium then, the observation of y1 is equivalent to

the observation of

z = x∗1 −
1√
αx

y1 = θ − σxε,

a public signal with precision αz = αεαx, or equivalently σz = σεσx. This feature is equivalent

to the simultaneous-signal model.

Since y1 and z are informationally equivalent, we write the strategy of late agents as a

function of z instead of y1. The attack from late agents is A2 (θ, z) = Φ
(√

αx(x
∗
2(z)− θ)

)
,

and the overall attack from both groups is A (θ, z) = µA1 (θ)+(1−µ)A2 (θ, z) . The threshold

θ∗(z) solves A (θ∗(z), z) = θ∗(z), or equivalently

µΦ (
√

αx [x∗1 − θ∗(z)]) + (1− µ)Φ (
√

αx [x∗2(z)− θ∗(z)]) = θ∗(z). (18)

The threshold x∗2(z) for late agents then solves Pr [θ ≤ θ∗(z) | x∗2(z), z] = c, or equivalently

Φ
(√

α (δx∗2(z) + (1− δ) z − θ∗(z))
)

= 1− c, (19)

where δ = αx/(αx + αz) and α = αx + αz.

Early agents, on the other hand, do not observe z and face a double forecast problem in that

they are uncertain about both the fundamental θ and the signal y1 that late agents condition

their attack on. The threshold x∗1 solves Pr [θ ≤ θ∗(z) | x∗1] = E[Pr [θ ≤ θ∗(z) | x∗1, z] | x∗1] = c,

or equivalently

∫
Φ

(√
α (δx∗1 + (1− δ) z − θ∗(z))

)√
α1φ (

√
α1 [x∗1 − z]) dz = 1− c, (20)

where α1 = αxαε/(1 + αε).
10

A monotone equilibrium is therefore a joint solution to (18)-(20). Let D denote the set

of decreasing real functions with range in [0, 1]. For any given function θ∗ ∈ D, (20) defines

a unique x∗1 ∈ R. Given x∗1 ∈ R, (18)-(19) has either unique or multiple solutions for θ∗ and

x∗2, depending on (αx, αε, µ). Different solutions to (18)-(19) for given x∗1 represent different

continuation equilibria for the game between late agents defined by a fixed strategy for the

early agents.

In the Appendix we show that, when (18)-(19) admits a unique solution for every x∗1 ∈ R,

the solution to the system (18)-(20) is also unique. On the other hand, when (18)-(19) admits

multiple solutions for every x∗1 ∈ R, we show that the system (18)-(20) admits multiple

10To see this, note that z = θ− σxε = x− ξ − σxε, so that z|x ∼ N (
0, σ2

x + σ2
xσ2

ε

)
. That is, conditional on

x, z is distributed normal with precision α1 = αxαε/(1 + αε).
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solutions. The analysis provides us with the following sufficient conditions for uniqueness and

multiplicity.

Proposition 5 (i) There exists a unique equilibrium if σ2
εσx ≥ (1− µ) /

√
2π

(ii) There exist multiple equilibria if σ2
εσx < (1− µ− µσ2

ε) /
√

2π

Proof. See Appendix.

Note that as µ → 0 the regions of multiplicity or uniqueness converge to those derived

in Proposition 4. Indeed, the dependence of (18) on x∗1 vanishes as µ → 0, so the equilibria

of the simultaneous-signal model are approximated by equilibria of the sequential model as

µ → 0. More generally, for any µ < 1, multiple equilibria exist if noise is sufficiently low, and

uniqueness holds if noise is sufficiently high.

5 Non-fundamental Volatility

We now investigate the role of the information structure for non-fundamental volatility (i.e.,

volatility conditional on θ) in the regime outcome and the equilibrium price. We are interested

in two sources of non-fundamental volatility: (1) multiple equilibria, since sunspots variables

may be used to coordinate on different equilibria; and (2) if the equilibrium is unique the

dependence on the non-fundamental shock ε.

With exogenous information, multiplicity disappears when agents observe the fundamen-

tals with small idiosyncratic noise. By implication, there is no sunspot volatility when σx is

small enough. Moreover, as σx → 0, the size of the attack and the regime outcome become

independent of ε. In this sense, all non-fundamental volatility vanishes as σx → 0.

In contrast, with endogenous information, the impact of private noise on volatility is

quite different. A sufficiently large reduction in σx may make the economy enter the region

of multiplicity and non-fundamental volatility may emerge from the economy’s reaction to

sunspots. Indeed, Corollaries 2 and 3 imply that the potential sunspot volatility is greatest

when either noise vanishes, σx → 0 or σε → 0, since the regime can then either collapse or

survive for any given θ ∈ (θ, θ] entirely depending on the sunspot realization. Moreover, when

the dividend is endogenous, sunspot volatility also emerges in prices.

With endogenous information, less noise may increase volatility even without entering the

region of multiple equilibria: when the equilibrium is unique, a reduction in σx or σε may

increase the sensitivity of equilibrium outcomes to the exogenous shock ε.

To see this, note that the regime is abandoned if and only if θ ≤ θ∗ (p). As long as

the equilibrium is unique, θ∗ (p) is continuously decreasing in p and P (θ, ε) is continuously
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Figure 4: The regime-change threshold θ̂(ε) as a function of the shock ε.

increasing in θ, so R (θ, ε) = 1 if and only if θ ≤ θ̂ (ε), where θ̂ (ε) is the unique solution to

θ̂ = θ∗(P (θ̂, ε)). We can thus examine non-fundamental volatility in the regime outcome by

examining the sensitivity of θ̂ (ε) to ε.

Solving for θ̂ in this way we obtain θ̂ (ε) = Φ (ψ + (σp/σx) ε) , ψ = (1+1/σ2
p)

1/2Φ−1 (1− c).

It follows that
∂θ̂

∂ε

∣∣∣∣∣
θ̂(ε)=θ̂0

=
σp

σx

φ(Φ−1(θ̂0)), (21)

so that θ̂ (ε) satisfies a single-crossing property with respect to σp/σx. In this sense, the

sensitivity of the regime outcome to the non-fundamental shock increases with σp/σx.

When the dividend is exogenous, f = θ, then σp/σx = 1/ (γσεσx) and non-fundamental

volatility increases with a reduction in either σx or σε. This result is illustrated in Figure ??,

which depicts the threshold θ̂ (ε) as a function of ε, with the dashed line corresponding to a

lower σx or σε than the solid line.

When instead f = f (A), we have σp/σx = 1/ (γσε) and the sensitivity of θ̂ (ε) to ε

increases with σε but is invariant with σx. This result still contrasts with the case of exogenous

information, where a reduction in σx reduces σp/σx, thus leading to a lower reaction to ε.

Consider next the implications for the volatility of prices, focusing again on regions where

the equilibrium is unique. When f = θ, we have p = θ − (γσεσ
2
x) ε. The impact of noise on

the sensitivity of the price to ε is then exactly as in Grossman-Stiglitz: a reduction in either

σx or σε implies lower non-fundamental volatility in prices. However, when the dividend is

endogenous f = f (A), we found that p = f (A) − (γσε) ε. Conditional on the attack – or

equivalently, the dividend – the volatility of the price decreases with a reduction in σε and is

independent of σx. But since the attack A is a function of ε, a reduction in σε may have an
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ambiguous overall effect on price volatility. We have verified numerically that this is indeed

the case and that price volatility may increase with a reduction in σε.

We conclude that less noise may increase volatility in both the regime outcome and the

asset price even when the equilibrium is unique. Our earlier results on equilibrium multiplicity

may thus be viewed as extreme versions this effect.

6 Conclusion

The main theme in Morris-Shin emphasizes the importance of the information structure for

understanding the determinacy of equilibria and the volatility of outcomes. This paper con-

tribution is to study the role of endogenous information aggregation. We model endogenous

public information by either: (i) the price of a financial asset whose dividend depends on the

underlying fundamental or the size of the attack in the coordination game; or (ii) a direct

noisy signal of others’ activity in the coordination game.

The most important feature in all cases is that the precision of endogenous public informa-

tion rises with the precision of exogenous private information. This effect is typically strong

enough to ensure multiplicity when the noise in either the individuals’ private information

about fundamentals or the aggregation process is small. Moreover, a reduction in noise may

increase the sensitivity of equilibrium outcomes to exogenous non-fundamental shocks even

when the equilibrium is unique.

These results may help understand crises phenomena such as currency attacks, bank runs,

debt crises, and financial crashes. They suggest that, when coordination is important, the

ability to trade in financial markets and otherwise exchange and aggregate information may

have a destabilizing effect. Conversely, the presence of noise traders or policies that limit

the information available to market participants may paradoxically have a stabilizing effect in

financial markets.

19



Appendix

Proof of Proposition 1 (Morris-Shin) and Corollary 1. When agents attack if and

only if x < x∗ (z) , the aggregate size of the attack is A(θ, z) = Φ
(√

αx (x∗(z)− θ)
)
. The

status quo is then abandoned if and only if θ ≤ θ∗(z), where θ∗(z) solves A(θ, z) = θ, or

equivalently

x∗(z) = θ∗(z) + 1√
αx

Φ−1(θ∗(z)). (22)

It follows that the expected payoff from attacking is Pr [θ ≤ θ∗(z)|x, z]− c and therefore x∗(z)

must solve the indifference condition Pr [θ ≤ θ∗(z)|x, z] = c. Since the posterior of the agent

about θ is Normal with mean αx

αx+αz
x + αz

αx+αz
z and precision α = αx + αz, the indifference

condition is

Φ
(√

αx + αz

(
θ∗(z)− αx

αx+αz
x∗(z)− αz

αx+αz
z
))

= c. (23)

Hence, an equilibrium is simply identified with a joint solution to (22) and (23).

Substituting (22) into (23) results in a single equation in θ∗(z) :

− αz√
αx

θ∗ + Φ−1 (θ∗) = g (z) , (24)

where g (z) =
√

1 + αz/αxΦ
−1 (1− c) − (

αz/
√

αx

)
z. It is easy to check that this equation

always admits a solution and the solution is unique for every z if and only if αz/
√

αx ≤ 1/
√

2π,

or equivalently σx ≤ σ2
z

√
2π, which completes the proof.

Finally, consider the limits as σx → 0 for given σz, or σz →∞ for given σx. In either case,

αz/
√

αx → 0 and
√

(αx + αz) /αx → 1. Condition (24) then implies that θ∗(z) → θ̂ = 1 − c

for any z, so that the regime-change threshold is unique and independent of z. Similarly,

x∗(z) → x̂, where x̂ = θ̂ if we consider the limit σx → 0, and x̂ = θ̂ + σxΦ
−1(θ̂) if we instead

consider the limit σz →∞. QED.

Proof of Propositions 2 and 3. In the main text.

Proposition A1 (noisy dividend). Suppose the dividend has a random component η.

For given ση > 0 and σε > 0 : (i) when f = θ + η, a unique equilibrium survives for σx

sufficiently small; (ii) when f = f(A) + η, multiple equilibria exist for σx sufficiently small.

In either case, the region of (σx, σε) for which there are multiple equilibria decreases with ση.

Proof. Part (i). Postulating, like in Section 3.2, that the posterior for θ conditional on (x, p)

is Normal with mean δx + (1− δ) p and precision α, where δ = αx/α and α = αx + αp, we

have the posterior for f is also Normal with the same mean and variance α−1 +ση. Individual
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asset demands are thus given by

k(x, p) =
E[f |x, p]− p

γVar[f |x, p]
=

δ (x− p)

γ
(
α−1 + σ2

η

)

and the equilibrium price by p = θ − σpε, where σp = (γ/δ)
(
α−1 + σ2

η

)
σε = γ

(
σ2

x + σ2
η/δ

)
σε

Since δ ∈ [0, 1] and σx > 0, we have immediately that that σp is bounded from below by

γσ2
ησε > 0. It follows that σx <

(
γσ2

ησε

)2√
2π suffices for σx < σ2

p

√
2π and hence for the

equilibrium to be unique. Moreover, σp is increasing in σx and σε, as well as ση. A higher ση

thus makes it more likely that the equilibrium is unique.

Part (ii). Like in Section 3.2, let the posterior for θ be Normal with mean δx+(1− δ) p̃ and

precision α, where p̃ = p/
√

αx + x∗(p), δ = αx/α, and α = αx + αp. It follows that

k(x, p) =
E[f |x, p]− p

γVar[f |x, p]
=

√
αxδ (x− p̃)

γ
(
αxα−1 + σ2

η

) =
δ

γ̃
(
α−1 + σ2

ηα
−1
x

) (x− p̃) ,

where γ̃ = γ
√

αx, and therefore p̃ = θ − σpε, where σp = γ̃
(
α−1 + σ2

ηα
−1
x

)
σε/δ. Using δα =

σ−2
x , γ̃ = γ/σx and 1/δ = 1 + σp/σx, we get

σp = γ̃
(
1/ (δα) + σ2

ησ
2
x/δ

)
σε = γ̃σ2

x

(
1 + σ2

η/δ
)
σε = γσx

(
1 + σ2

η (1 + σp/σx)
)
σε

and therefore

σp =
1 + σ2

η

1− γσ2
ησε

γσεσx.

Hence, a higher ση again makes it harder for multiple equilibria to exist, nevertheless multi-

plicity is ensured by a sufficiently small σx or σε. QED

Proof of Proposition 4 (simultaneous signal). Given that an agent attacks if and only if

x ≤ x∗(y), the aggregate attack is A(θ, y) = Φ
(√

αx(x
∗(y)− θ)

)
. Condition (16) then implies

that the signal satisfies

x∗(y)− σxy = θ − σxσεε. (25)

Note that (25) is a mapping between y and z = θ − σxσεε. Define the correspondence

Y(z) = { y ∈ R | x∗(y)− σxy = z } . (26)

We will later show that Y(z) is non-empty and examine when it is single- or multi-valued.

Take any function Ỹ (z) that is a selection from this correspondence, Ỹ (z) ∈ Y(z) for all

z, and let Y (θ, ε) = Ỹ (θ − σxσεε). The observation of y = Y (θ, ε) is then equivalent to the
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observation of z = θ − σzε = Z (y) , where Z (y) ≡ x∗(y)− σxy and

σz = σxσε. (27)

That is, it is as if agents observe a Normal public signal with precision proportional to precision

of exogenous private information.

The individual attacks if and only if x ≤ x∗ (y) , where x∗ (y) solves the indifference

condition

Φ
(√

αx + αz

(
θ∗(y)− αx

αx+αz
x∗ (y)− αz

αx+αz
Z (y)

))
= c. (28)

The regime in turn is abandoned if and only if θ ≤ θ∗(y), where θ∗(y) solves A(θ, y) = θ, or

equivalently

x∗(y) = θ∗(y) + 1√
αx

Φ−1(θ∗(y)). (29)

Using Z (y) = x∗(y)− σxy and substituting x∗ (y) from (29) into (28), we get

θ∗(y) = Φ
(√

αx

αx+αz
Φ−1 (1− c) + αz

αx+αz
y
)

, (30)

which together with (29) determines a unique pair θ∗(y) and x∗ (y). The strategy a (x, y) and

the corresponding aggregate A (x, y) are thus uniquely determined.

We return to the equilibrium correspondence Y(z). Recall that this is given by the set of

solutions to x∗(y)− σxy = z. Using (29) and (30) this reduces to F (y) = z, where

F (y) ≡ Φ
(

αz

αx+αz
y + q

)
+ 1√

αx

(
− αx

αx+αz
y + q

)
(31)

and q ≡
√

αx/ (αx + αz)Φ
−1(1 − c). Note that F (y) is continuous in y, and F (y) → −∞

as y → +∞, and F (y) → +∞ as y → −∞, which guarantees that Y(z) is non-empty and

therefore an equilibrium always exists. Next, note that

sign {F ′(y)} = −sign
{

1− αz√
αx

φ
(

αz

αx+αz
y + q

)}

and therefore F (y) is globally monotonic if and only if αz/
√

αx ≤
√

2π, in which case Y(z)

is single valued. If instead αz/
√

αx >
√

2π, there is a non-empty interval (z, z) within which

Y(z) takes three values. Different (monotone) selections then sustain different equilibria.

Using αz = αεαx from (27) completes the proof. QED

Proof of Proposition 5 (non-simultaneous signal). We can reduce the dimensionality
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of the system by solving (18) for x∗2(z) :

x∗2(z) = θ∗(z) + 1√
αx

Φ−1
(
θ∗(z) + µ

1−µ
{θ∗(z)− Φ (

√
αx [x∗1 − θ∗(z)])}

)
.

Substituting the above into (19) and using δ = αx/(αx + αz) and α = αx + αz, we obtain:

Γ(θ∗(z), x∗1) = g (z) , (32)

where

Γ(θ, x1) ≡ − αz√
αx

θ + Φ−1

(
θ +

µ

1− µ
{θ − Φ (

√
αx [x∗1 − θ])}

)
,

g (z) =
√

1 + αz/αxΦ
−1 (1− c) − (

αz/
√

αx

)
z, and αz = αεαx. We conclude that an equilib-

rium is a joint solution of (20) and (32) for a threshold x∗1 ∈ R and a function θ∗ : R→ (0, 1).

For any µ ∈ (0, 1) and any x1 ∈ R, Γ(θ, x1) is continuous in θ, with Γ(θ, x1, µ) = −∞
and Γ(θ, x1, µ) = ∞, where θ = θ (x1, αx, µ) and θ = θ (x1, αx, µ) solves, respectively, θ +

µ
1−µ

{
θ − Φ

(√
αx [x1 − θ]

)}
= 0 and = 1, and therefore satisfy 0 < θ < θ < 1. It follows that

(32) always admits a solution; that is, for any given x∗1 ∈ R, (32) defines at least one function

θ∗ : R→ (
θ, θ

)
.

We next examine under what conditions the function that solves (32) is unique. Note that

∂Γ

∂θ
= − αz√

αx

+ Λ (θ; x1, αx, µ) ,

Λ (θ; x1, αx, µ) ≡ 1

φ(Φ−1(θ+ µ
1−µ

{θ−Φ(
√

αx[x1−θ])}))

{
1 +

µ

1− µ
[1 +

√
αxφ (

√
αx [x1 − θ])]

}

As θ → θ or θ (equivalently, z → ±∞), Λ (θ; x1, αx, µ) → +∞. Let

K (x1, αx, µ) ≡ inf
θ∈(θ,θ)

Λ (θ; x1, αx, µ)

and note that, since φ (.) takes values in (0, 1/
√

2π],

K (x1, αx, µ) ≥ 1

1/
√

2π

{
1 +

µ

1− µ
[1 +

√
αx0]

}
=

√
2π

1− µ
≡ K (µ) .

Moreover, letting θ̂ = θ̂ (x1, αx, µ) ∈ (
θ, θ

)
be the solution to θ+ µ

1−µ

{
θ − Φ

(√
αx [x1 − θ]

)}
=
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1/2 = Φ
(
φ−1

(
1/
√

2π
))

, we have

K (x1, αx, µ) ≤ Λ
(
θ̂; x1, αx, µ

)
=

1

1/
√

2π

{
1 +

µ

1− µ

[
1 +

√
αxφ

(√
αx

[
x1 − θ̂

])]}

≤
√

2π

{
1 +

µ

1− µ

[
1 +

√
αx√
2π

]}
≡ K (αx, µ) .

Note, importantly, that the bounds K and K are the same across all x∗1 ∈ R.

Part (i) : σ2
εσx ≥ 1√

2π
(1− µ) . In this case, αz√

αx
≤ K (µ) ≤ infx1 K (θ, x1, αx, µ) =

infθ,x1 Λ (θ, x1, αx, µ) and therefore Γ (θ, x1) is globally increasing in θ for every x1. It fol-

lows that (32) defines a unique function θ∗ : R→ (
θ, θ

)
for any given x∗1. Moreover, since Γ is

decreasing in x1 and g is decreasing in z, the function θ∗ is decreasing in z and increasing in

x∗1. Finally, θ∗ is continuous in both z and x∗1.

Next, consider (20). For any given decreasing function θ∗ : R → (
θ, θ

)
, (20) admits a

unique solution x∗1 ∈ R. Moreover, this solution is continuous and increasing in θ∗.

Let C be the set of decreasing (and bounded) functions θ∗ : R → (
θ, θ

)
. Then, (32) is

a mapping R → C and (20) is a mapping C → R. Together, they define a continuous and

increasing mapping T : R→ R.

It is easy to check that T (−∞) > −∞ and T (+∞) < ∞. Hence, a fixed point always

exists. Moreover, for arbitrary x∗1 and a > 0, let x∗∗1 = x∗1 + a and let θ∗ and θ∗∗ be the

solutions to (32) for x∗1 and x∗∗1 , respectively; that is,

Γ (θ∗, x∗1) = g (z) and Γ (θ∗∗, x∗∗1 ) = g (z) .

The indifference condition (20) then gives

Π (θ∗, Tx∗1) = 1− c and Π (θ∗∗, Tx∗∗1 ) = 1− c,

where Π : C × R→ [0, 1] with

Π (θ, x1) ≡
∫

Φ
(√

α [δx1 + (1− δ) z − θ(z)]
)√

α1φ (
√

α1 [x1 − z]) dz

Let θ̃ ≡ θ∗ + a and x̃1 be the solution to Π
(
θ̃, x̃1

)
= 1− c. Since αz√

αx
<

√
2π

1−µ
, we have that

Γ
(
θ̃, x∗∗1

)
= Γ (θ∗ + a, x∗1 + a) = − αz√

αx
(θ∗ + a) + Φ−1

(
1

1−µ
(θ∗ + a)− µ

1−µ
Φ (
√

αx [x∗1 − θ∗])
)

>

> − αz√
αx

θ∗ + Φ−1
(

1
1−µ

θ∗ − µ
1−µ

Φ (
√

αx [x∗1 − θ∗])
)

= Γ (θ∗, x∗1) = g (z) = Γ (θ∗∗, x∗∗1 ) ;
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and since in this case Γ (θ, x1) is increasing in θ, we get θ̃ > θ∗∗. By the fact that Π (θ, x1) is

decreasing in θ and increasing in x1, it then follows that x̃1 > Tx∗∗1 . Next, note that

Π
(
θ̃, Tx∗1 + a

)
= Π (θ∗ + a, Tx∗1 + a)

=

∫
Φ

(√
α [δTx∗1 + (1− δ) (z − a)− θ∗(z)]

)√
α1φ (

√
α1 [Tx∗1 − (z − a)]) dz =

=

∫
Φ

(√
α [δTx∗1 + (1− δ) z′ − θ∗(z′ + a)]

)√
α1φ (

√
α1 [Tx∗1 − z′]) dz′

where the last equality follows by changing the variable of integration from z to z′ = z − a.

But since θ∗ is a decreasing function, Π in turn is decreasing in θ∗, and a > 0, we have

Π
(
θ̃, Tx∗1 + a

)
>

∫
Φ

(√
α [δTx∗1 + (1− δ) z′ − θ∗(z′)]

)√
α1φ (

√
α1 [Tx∗1 − z′]) dz′ =

= Π (θ∗, Tx∗1) = 1− c = Π
(
θ̃, x̃1

)

and therefore Tx∗1 + a > x̃1. Combining with the earlier result that x̃1 > Tx∗∗1 , we conclude

that Tx∗∗1 < Tx∗1 + a, which proves that the slope of the mapping T is less than one for every

x∗1. It follows that T has a unique fixed point.

Part (ii): σ2
εσx < 1√

2π
(1− µ− µσ2

ε) . In this case, αz√
αx

> K (αx, µ) ≥ supx1
K (x1, αx, µ) and

therefore Γ (θ, x1) necessarily has a non-empty region of non-monotonicity in θ for every x1. It

follows that, for any x∗1, there is a non-empty interval Z = Z (x∗1) = (z (x∗1) , z (x∗1)) such that

(32) admits three distinct solutions whenever z ∈ Z (x∗1) and a unique solution otherwise. Let

θ∗L (resp., θ∗H) be the function defined by selecting the lowest (resp., highest) solution whenever

z ∈ Z and the unique one whenever z /∈ Z. Each of the functions θ∗L and θ∗H is decreasing in

z. Next, let TL (resp., TH) be the associated mappings. Each of the mappings TL and TH are

continuous and satisfy T (−∞) > −∞ and T (+∞) < ∞. Hence, there exists a fixed point

(at least one) for each mapping. Moreover, for any given x∗1, θ∗L (z) < θ∗H (z) for all z ∈ Z,

which implies (because of the monotonicity in (20) and the fact that Z has positive measure)

that TL (x∗1) < TH (x∗1) for any x∗1. It follows that the lowest fixed point of TL is lower than

the highest fixed point of TH , which, together with the fact that θ∗L < θ∗H for any given x∗1,

implies that the associated x∗2 and θ∗ satisfy the same ordering.
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