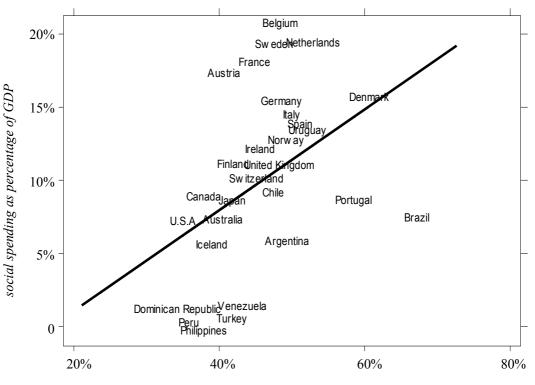
Fairness and Redistribution

Alberto Alesina

Harvard University, NBER and CEPR

George-Marios Angeletos


MIT and NBER

MOTIVATION / INTRODUCTION

- Inequality much higher in the United States than in Europe
 - ... yet, redistribution much lower in the United States than in Europe

- Perhaps small differences in (unobserved) fundamentals
 - ... yet, large differences in perceptions, attitudes, and outcomes

• People concerned about fairness, not just equality!

percentage who believe that luck determines income

THIS PAPER

• Evidence suggests that

gov policies = F(fairness of econ outcomes)

- But, why do beliefs about fairness differ so much across countries?
- Who is right, the Americans who think that effort determines success, or the Europeans who think that it is mostly luck?

THIS PAPER

• Evidence suggests that

gov policies = F(fairness of econ outcomes)

- But, why do beliefs about fairness differ so much across countries?
- Who is right, the Americans who think that effort determines success, or the Europeans who think that it is mostly luck?

• Beliefs are endogenous

fairness in equilibrium = G(gov policies)

MAIN RESULT

interaction between redistributive policies and fairness

 $\Downarrow \quad \Downarrow$

a politico-economic complementarity

 $\Downarrow \quad \Downarrow$

amplifies the effect of exogenous differences

or even leads to multiple equilibria

LAYOUT

- 1. Introduction
- 2. Evidence

inequality – redistribution – fairness

3. Basic Model

static economy – multiple equilibria

4. History Dependence

dynamic economy – multiple steady states

5. Corruption and Rent-Seeking

reinterpreting luck – novel multiplicity

6. Concluding Remarks

Table 1

Effect of belief that luck determines income on aggregate social spending (cross-country data)

Dependent variable: Social spending as percent of GDP					
	1	2	3	4	
Mean belief that luck determines income	32.728 *** (2.925)	32.272 *** (3.064)	36.430 *** (3.305)	31.782 ** (2.521)	
Gini coefficient		-0.306 [*] (1.724)	-0.238 [*] (1.739)	-0.115 (0.613)	
GDP per capita			3.148 (1.348)	4.754 (1.548)	
Majoritarian			0.493 (0.184)	0.031 (0.011)	
Presidential				-4.24 (1.392)	
Latin America	-6.950 ^{***} (3.887)	-4.323 (1.472)	-2.992 (0.941)	0.413 (0.098)	
Asia	-9.244 ^{***} (6.684)	-6.075 ^{**} (2.153)	-0.808 (0.142)	4.657 (0.618)	
Constant	-3.088 (0.590)	7.907 (1.396)	-25.207 (1.152)	-41.401 (1.425)	
Observations Adjusted R-squared	29 0.431	26 0.494	26 0.495	26 0.496	

Table 2

The effect of belief that luck determines income on individual political orientation (individual data)

Dependent variable: Being left on the political spectrum				
	1	2	3	
Individual belief that luck		0.541 ***	0.607 ***	
determines income		(3.69)	(3.78)	
Income	-0.01 ^{***}	-0.009***	-0.009 ^{***}	
	(7.20)	(3.31)	(3.88)	
Years of education	-0.004 ^{***} (3.79)	-0.002 (0.74)	0.000 (0.07)	
City population	0.01 ^{***}	0.01 ^{***}	0.009 ^{***}	
	(7.43)	(4.29)	(4.40)	
White	0.036 (4.83)	0.051 ^{***} (3.13)	0.033** (2.11)	
Married	-0.026***	-0.03 ^{***}	-0.032***	
	(3.22)	(2.97)	(3.11)	
No. of children	-0.009***	-0.01 ^{***}	-0.013***	
	(3.63)	(3.09)	(3.59)	
Female	-0.044***	-0.043***	-0.039***	
	(6.93)	(3.43)	(3.39)	
US resident	-0.125***	-0.096***	-0.051	
	(12.14)	(3.31)	(1.37)	
Age group 18-24	0.11*** (6.19)	0.078 ^{***} (3.41)	0.007*** (3.11)	
Age group 25-34	0.131***	0.116***	0.114***	
Age group 35-44	(11.73) 0.126*** (12.02)	(7.23) 0.117***	(7.00) 0.12***	
Age group 45-54	(12.03)	(8.96)	(9.27)	
	0.085***	0.081***	0.08 ^{***}	
Age group 55-64	(7.98)	(6.37)	(6.03)	
	0.039 ^{***}	0.038 ^{***}	0.037 ^{***}	
Constant	(3.55)	(3.25)	(3.00)	
	0.347***	0.045	0.218	
Observations	(16.15) 20269	(0.62)	(1.64) 14998	
R-squared	0.03	0.03	0.04	

EXPERIMENTAL EVIDENCE

• Ferh and Schmidt (2001) etc:

dictator games \rightsquigarrow altruism ultimatum games \rightsquigarrow negative reciprocity gift-exchange games \rightsquigarrow positive reciprocity public-good games \rightsquigarrow cooperation on punishment

- Hoffman and Spitzer (1985), Hoffman et al (1998), Ball et al (1996), Clark (1998): outcomes sensitive on whether role/status is random or earned redistribution sensitive on whether initial incomes random or earned
- Psychologists, sociologist, political scientists:

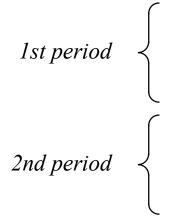
belief in a just world, demand for fairness

"one should deserve what he gets, and get what he deserves"

BASIC MODEL

- No intergenerational links (static economy)
- Large number of agents $(i \in [0, 1])$
- Heterogeneity in willingness to work (β_i) or talent (A_i)
 → justified variation in income
- Heterogeneity in luck (η_i)

 \rightsquigarrow unjustified variation in income


- Utility from both own consumption (c_i) and fairness of economic outcomes (Ω)
- Government = median voter

INCOME AND TIMING

• Pre-tax income or wealth:

$$y_i = A_i[\alpha k_i + (1 - \alpha)e_i] + \eta_i$$

• Two periods of life

born with given A_i , β_i and η_i decide investment k_i (ex ante) vote on tax/redistribution policy τ decide effort e_i (ex post) consume net-of-tax income and die

PREFERENCES AND BUDGETS

• Preferences

$$U_i = u_i - \gamma \, \Omega$$

 u_i = utility from own choices (private good)

$$u_{i} = u_{i}(c_{i}, k_{i}, e_{i}) = c_{i} - \frac{1}{\beta_{i}} \left[\frac{\alpha}{2} k_{i}^{2} + \frac{1 - \alpha}{2} e_{i}^{2} \right]$$

 Ω = disutility from social injustice (public good)

PREFERENCES AND BUDGETS

• Preferences

$$U_i = u_i - \gamma \, \Omega$$

 u_i = utility from own choices (private good)

$$u_{i} = u_{i}(c_{i}, k_{i}, e_{i}) = c_{i} - \frac{1}{\beta_{i}} \left[\frac{\alpha}{2} k_{i}^{2} + \frac{1 - \alpha}{2} e_{i}^{2} \right]$$

 Ω = disutility from social injustice (public good)

• Household and government budgets

$$c_i = (1 - \tau)y_i + G$$
$$G = \tau \int_i y_i$$

FAIR OUTCOMES AND SOCIAL INJUSTICE

• Fair or ideal outcomes

$$\widehat{c}_{i} \equiv \widehat{y}_{i} \equiv A_{i}[\alpha k_{i} + (1 - \alpha)e_{i}] = y_{i} - \eta_{i}$$
$$\widehat{u}_{i} \equiv u(\widehat{c}_{i}, k_{i}, e_{i})$$

• Common measure of social injustice

$$\Omega = \int_{i} [u_{i} - \hat{u}_{i}]^{2} = \int_{i} [c_{i} - \hat{c}_{i}]^{2}$$

FAIR OUTCOMES AND SOCIAL INJUSTICE

• Fair or ideal outcomes

$$\widehat{c}_{i} \equiv \widehat{y}_{i} \equiv A_{i}[\alpha k_{i} + (1 - \alpha)e_{i}] = y_{i} - \eta_{i}$$
$$\widehat{u}_{i} \equiv u(\widehat{c}_{i}, k_{i}, e_{i})$$

• Common measure of social injustice

$$\Omega \equiv \int_{i} [u_{i} - \hat{u}_{i}]^{2} = \int_{i} [c_{i} - \hat{c}_{i}]^{2}$$

• Assuming that \hat{y}_i and η_i are independent

$$\Omega = \tau^2 \operatorname{Var}(\widehat{y}_i) + (1 - \tau)^2 \operatorname{Var}(\eta_i)$$

• If income distribution was exogenous and $\min \Omega$ was the only policy goal

$$\frac{1-\tau}{\tau} = \frac{\operatorname{Var}(\widehat{y}_i)}{\operatorname{Var}(\eta_i)}$$

← optimal tax decreases with signal-to-noise ratio

INCOME DISTRIBUTION

• Optimal investment/effort choices

$$k_i = (1 - \tau^e) A_i \beta_i$$
$$e_i = (1 - \tau) A_i \beta_i$$

where τ^e = expected, τ = actual tax rate.

INCOME DISTRIBUTION

• Optimal investment/effort choices

$$k_i = (1 - \tau^e) A_i \beta_i$$
$$e_i = (1 - \tau) A_i \beta_i$$

where τ^e = expected, τ = actual tax rate.

• Fair and actual income

$$\widehat{y}_{i} = \beta_{i}A_{i}^{2}[1 - \alpha\tau^{e} - (1 - \alpha)\tau]$$
$$y_{i} = \widehat{y}_{i} + \eta_{i}$$

←

• Equilibrium income distribution

$$\frac{\operatorname{Var}(\widehat{y}_i)}{\operatorname{Var}(\eta_i)} = \frac{\sigma^2}{v^2} [1 - \alpha \tau^e - (1 - \alpha)\tau]^2$$

signal-to-noise ratio decreases with tax distortion

where
$$\sigma^2 = Var(\beta_i A_i^2)$$
 and $v^2 = Var(\eta_i)$.

OPTIMAL REDISTRIBUTION

• The optimal tax

 $\tau = \arg \max_{\tau} [median\{U_i\}]$

$$\Rightarrow \qquad \tau = F(\tau^e; \alpha, \gamma, \sigma, \nu, \Delta) \\ \pm + + - + +$$

where

$$\Delta = mean\{\beta_i A_i^2\} - median\{\beta_i A_i^2\}$$

GENERAL EQUILIBRIUM

• A politico-economic equilibrium is a (stable) fixed point

$$\tau^* = F(\tau^*; \cdot)$$
 with $F_{\tau} < 1$

• Fairness is necessary and sufficient for multiplicity:

$\Delta = 0 = \gamma$	\Rightarrow	unique equilibrium with $\tau^* = 0$
$\Delta > 0 = \gamma$	⇒	unique equilibrium with $\tau^* > 0$
$\gamma > 0$	\Rightarrow	possibly multiple equilibria with $\tau^* > 0$

Figure 2

EXTENSION I: HISTORY DEPENDENCE

- Non-overlapping generations $t \in \{\dots, -1, 0, 1, \dots\}$
- Each generation lives one period and chooses its own tax policy
- Altruistic intergenerational transfers (bequests, parental investment, etc)

EXTENSION I: HISTORY DEPENDENCE

- Non-overlapping generations $t \in \{\dots, -1, 0, 1, \dots\}$
- Each generation lives one period and chooses its own tax policy
- Altruistic intergenerational transfers (bequests, parental investment, etc)
- Preferences

$$U_t^i = u_t^i - \gamma \Omega_t$$
$$u_t^i = (c_t^i)^{1-\alpha} (k_t^i)^{\alpha} - \frac{1}{\beta_t^i} (e_t^i)^2$$

• Wealth and budgets

$$y_t^i = k_{t-1}^i + A_t^i e_t^i + \eta_t^i$$
$$c_t^i + k_t^i = (1 - \tau_t) y_t^i + G_t$$
$$G_t = \tau_t \int_i y_t^i$$

SOCIAL INJUSTICE

• In the absence of redistribution

$$y_t^i = k_{t-1}^i + A_t^i e_t^i + \eta_t^i = \sum_{s \le t} \alpha^{s-t} A_s^i e_s^i + \sum_{s \le t} \alpha^{s-t} \eta_s^i$$

• Fair component of wealth

$$\widehat{y}_t^i \equiv \sum_{s \le t} \alpha^{s-t} A_s^i e_s^i$$

• Social injustice

$$\Omega_t = \tau_t^2 \operatorname{Var}(\widehat{y}_t^i) + (1 - \tau_t)^2 \operatorname{Var}(y_t^i - \widehat{y}_t^i)$$

• History $\{\tau_s\}_{s\leq t}$ matters

$$\frac{\operatorname{Var}(\widehat{y}_{t}^{i})}{\operatorname{Var}(y_{t}^{i}-\widehat{y}_{t}^{i})} = \frac{\operatorname{Var}\left[\sum_{s \leq t} \alpha^{s-t}(1-\tau_{s})\beta_{s}^{i}A_{s}^{i2}\right]}{\operatorname{Var}\left[\sum_{s \leq t} \alpha^{s-t}\eta_{s}^{i}\right]}$$

STEADY STATES

- In general, $\tau_t = f(\tau_{t-1}, \tau_{t-2}, \tau_{t-3}, ...)$
- Suppose $\tau_s = \overline{\tau}$ for all s < t. Then

$$\frac{\operatorname{Var}(\widehat{y}_t^i)}{\operatorname{Var}(y_t^i - \widehat{y}_t^i)} = \frac{\sigma^2}{v^2} [1 - \alpha \overline{\tau} - (1 - \alpha)\tau_t]^2$$

• The equilibrium tax is

$$\tau_t = F(\overline{\tau}; \cdot)$$

where F is the same function as in the static model

• The fixed points of *F* now correspond to steady states

The steady state at which an economy rests depends on history or culture

EXTENSION II: CORRUPTION

• Agents can engage in two kinds of activities:

a productive activity (work)a rent-seeking activity (corruption)

- Larger governments \rightsquigarrow more room for corruption
- Heterogeneity in both productive and rent-seeking abilities
- **Fairness:** income is justifiable only if from work

CORRUPTION

• Reinterpreting "luck" as corruption:

with a desire for fairness, multpiple steady states

• Novel result: self-sustained corruption

multpile steady states even without a desire for fairness, provided skewness in distribution of rent-seeking abilities

• Contrust with Meltzer-Richard:

unique steady state if there is neither a concern for fairness nor skewness in the distribution of rent-seeking abilities

CONCLUDING REMARKS

- Observed versus unobserved luck
- Importance of (new) fairness concept for both normative and positive analysis
- Endogenize preference for fairness
- Amador, Angeletos, Werning (2004): Mirrlees with two types of inequality