Crises and Prices

Information Aggregation, Multiplicity and Volatility

George-Marios Angeletos (MIT and NBER)

Iván Werning (MIT, NBER and UTDT)

Volatility

- volatility
 - fundamentals
 - non-fundamentals
- crises
 - currency attacks
 - bank runs
 - financial crises
 - riots

Coordination: attacking regime optimal when enough agents attack

Multiple Equilibria

- multiple equilibria → sunspot volatility
- incomplete theories?
- Morris and Shin (1998)
 perturbation away from common knowledge
 - → disperse information → unique equilibrium
- unintended consequence: kills volatility

This Paper

- information structure role in volatility
- endogenize public info
 - Model I: financial price
 - Model II: signal of aggregate activity
- Grossman-Stiglitz meets Morris-Shin
 - information aggregated endogenously
 - noise avoids common knowledge

Main Results

better private info → better public info

less noise → more volatility

Main Results

- less noise → more volatility
 - comparative static of unique equilibrium
 - introducing multiplicity
- uniqueness not perturbation
- types of multiplicity
 - regime outcome
 - asset demand and price

Related Literature

- Morris and Shin (1998, 2000)
- Atkeson (2000)
- Hellwig, Mukherji, and Tsyvinski (2004)
- Tarashev (2003)
- Angeletos, Hellwig and Pavan (2003, 2004), Edmond (2004)
- Chari and Kehoe (2004)
- Grossman and Stiglitz (1976), Barlevy and Veronesi (2004)

Basic Model

- agents $i \in [0,1]$ choose whether to "attack a status quo"
- payoffs:

	Regime Change $(R=1)$	Status Quo $(R=0)$
Attack $(a_i = 1)$	1-c	-c
Not $(a_i = 0)$	0	0

- A mass of agents attacking
- \bullet θ strength of status quo
- ullet status quo abandoned $R=1 \iff A> heta$

Common Knowledge

- let $\underline{\theta} \equiv 0$ and $\overline{\theta} \equiv 1$
- with common knowledge of θ :

$$\theta \le \underline{\theta} \longrightarrow A = 1 \quad R = 1$$

$$\theta > \overline{\theta} \qquad \longrightarrow \quad A = 0 \quad R = 0$$

$$\theta \in (\underline{\theta}, \overline{\theta}] \longrightarrow \text{multiple equilibria}$$

Morris-Shin (Exogenous Information)

• private signal:

$$x_i = \theta + \xi_i$$
 $\xi_i \sim \mathcal{N}(0, \sigma_x^2)$

• public signal:

$$z = \theta + v$$
 $v \sim \mathcal{N}(0, \sigma_z^2)$

Proposition. equilibrium unique iff

$$\frac{\sigma_x}{\sigma_z^2} \le \sqrt{2\pi}$$

Morris-Shin (Exogenous Information)

• private signal:

$$x_i = \theta + \xi_i$$
 $\xi_i \sim \mathcal{N}(0, \sigma_x^2)$

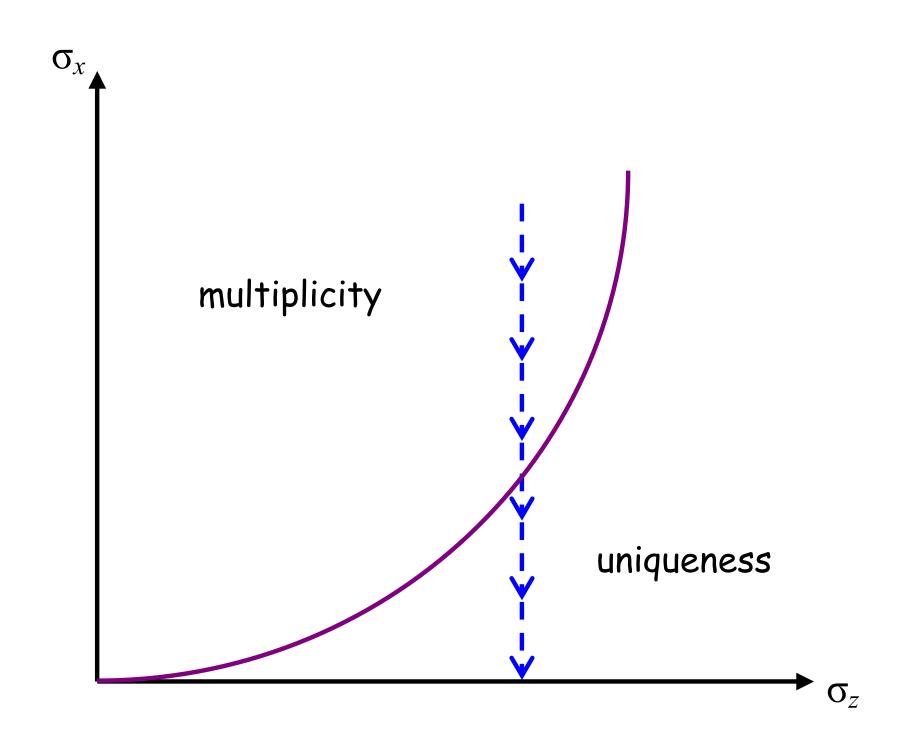
• public signal:

$$z = \theta + v$$
 $v \sim \mathcal{N}(0, \sigma_z^2)$

Proposition. equilibrium unique iff

$$\frac{\sigma_x}{\sigma_z^2} \le \sqrt{2\pi}$$





Missing

- missing...
 - prices or other endogenous indicators
 - some knowledge about others actions
- public info
 - bank runs: deposit information
 - currency crises: peso forward
 - riots: attendance reported
 - ⇒ public information largely endogenous

Model I: Financial Prices

stage 1: financial market

• agents trade financial asset

stage 2: coordination game

- use information revealed by price
- agents attack or not

Financial Market

- risky asset: price p, dividend f
- random supply

$$\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

• payoff from financial trade:

$$V(k_i, f, p) = u(w_i - pk_i + fk_i)$$
$$u(c) = -\exp(-\gamma c)/\gamma$$

• two cases for dividend:

exogenous $f = f(\theta)$ vs. endogenous f = f(A)

Equilibrium Definition

Equilibrium: functions (P, k, K, a, A) such that

$$\begin{cases} p = P(\theta, \varepsilon) \\ k(x,p) = \arg\max_{k \in \mathbb{R}} \mathbb{E}\left[\ V(k,f,p) \mid x,p \ \right] \\ K(\theta,p) = \int_x k(x,p) d\Phi\left(\frac{x-\theta}{\sigma_x}\right) \\ K(\theta,p) = \varepsilon \end{cases}$$

$$\text{stage 2} \left\{ \begin{array}{c} a(x,p) = \arg\max_{a \in [0,1]} \mathbb{E}\left[\; U(a,R) \mid x,p \; \right] \\ \\ A(\theta,p) = \int_x a(x,p) d\Phi\left(\frac{x-\theta}{\sigma_x}\right) \end{array} \right.$$

(1) Exogenous Dividend

dividend

$$f = f(\theta) = \theta$$

ullet optimal k

$$k = \frac{\mathbb{E}[\theta|x, p] - p}{\gamma \text{Var}[\theta|x, p]}$$

• guess and verify

$$\mathbb{E}[\theta|x,p] = \delta x + (1-\delta)p$$
$$\operatorname{Var}[\theta|x,p] = \sigma^2$$

(1) Exogenous Dividend

• aggregate demand

$$K(\theta, p) = \frac{\delta(\theta - p)}{\gamma \sigma^2}$$

market clearing

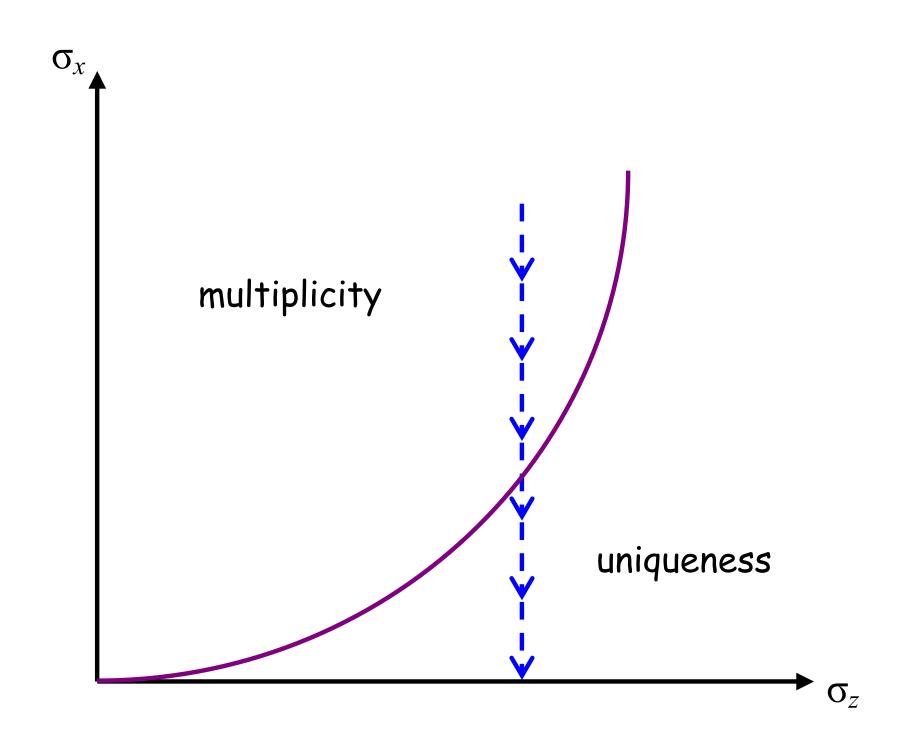
$$K(\theta, p) = \varepsilon \quad \Leftrightarrow \quad p = P(\theta, \varepsilon) = \theta - \frac{\gamma \sigma^2}{\delta} \varepsilon$$

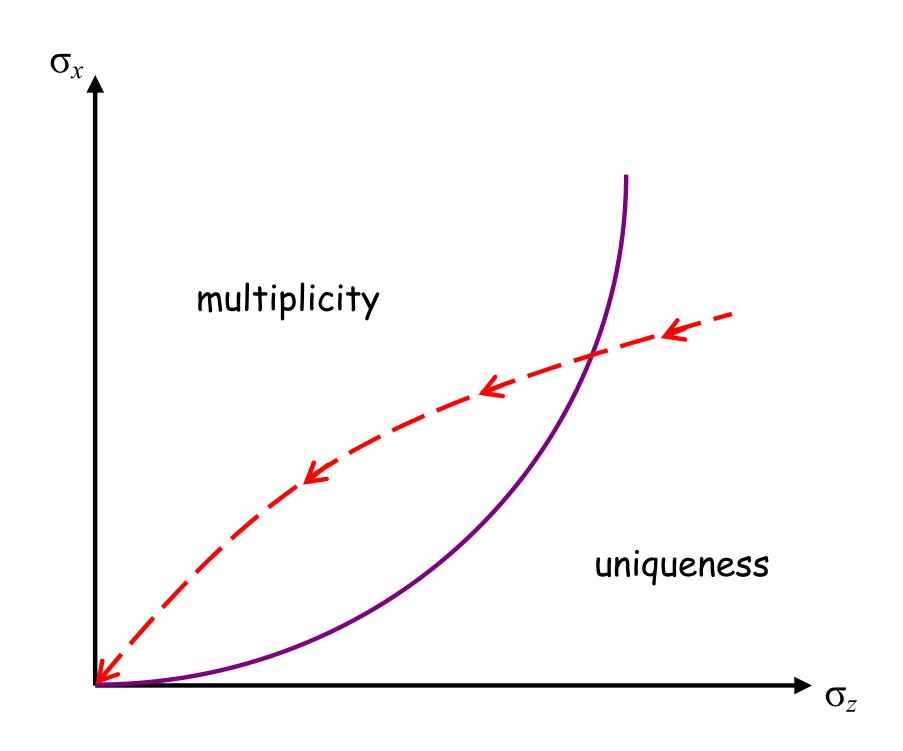
price → public signal with

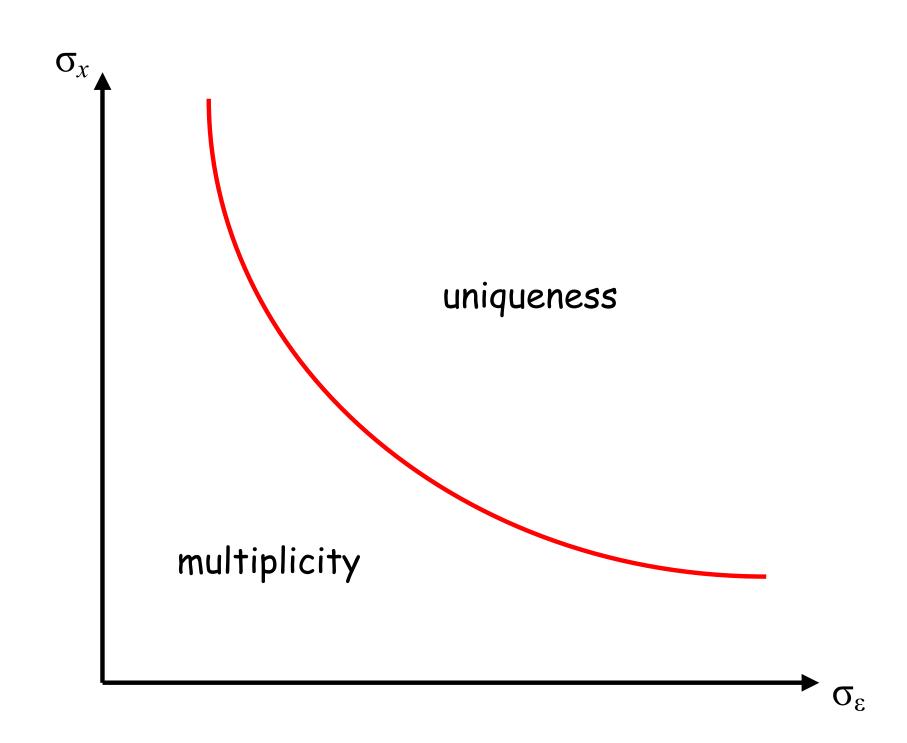
$$\sigma_z = \frac{\gamma \sigma^2}{\delta} \sigma_{\varepsilon}$$

• Normality \rightarrow compute δ , σ , σ_z

$$\sigma_z = \gamma \sigma_\varepsilon \sigma_x^2$$







(1) Exogenous Dividend

Proposition. multiple equilibria iff

$$\sigma_{\varepsilon}^2 \sigma_x^3 < \gamma^2 (2\pi)^{-1/2}$$

multiplicity in (a, A); unique (P, k, K)

- better private info → better public info
- small noise → multiple equilibria
- large noise → unique equilibrium
- no perturbation argument for uniqueness

(2) Endogenous Dividend

• same setup but endogenous dividend

$$f = f(A)$$

- $f(A) = -\Phi^{-1}(A) \rightarrow \text{Normality}$
- info revealed by price

$$\sigma_z = \gamma \sigma_\varepsilon \sigma_x^3$$

(2) Endogenous Dividend

Proposition: multiple equilibria iff $\sigma_{\varepsilon}^2 \sigma_x^5 < \gamma^2 (2\pi)^{-1/2}$

- ullet uniqueness in attack a(x,p) and demand k(x,p)
- multiplicity in price $P(\theta, \varepsilon)$

(3) Other Cases

- risk neutral exogenous dividend
 - multiplicity only in (A, R), not in (P, K)
 - multiplicity when σ_{ε} small...
 - ... but uniqueness when σ_x small

- risk neutral endogenous dividend
 - multiplicity when either σ_{ε} or σ_{x} small
 - multiplicity in price

Model II: Observable Actions

• private signal:

$$x_i = \theta + \xi_i$$
 $\xi_i \sim \mathcal{N}(0, \sigma_x^2)$

• public signal:

$$y = s(A, \varepsilon)$$
 $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

- $\sigma_x, \sigma_\varepsilon$ exogenous $\to \sigma_z$ endogenous
- to preserve normality (Dasgupta, 2002):

$$s(A,\varepsilon) = \Phi^{-1}(A) + \varepsilon$$

Model II: Observable Actions

• private signal:

$$x_i = \theta + \xi_i$$
 $\xi_i \sim \mathcal{N}(0, \sigma_x^2)$

• public signal:

$$y = s(A, \varepsilon)$$
 $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

- $\sigma_x, \sigma_\varepsilon$ exogenous $\to \sigma_z$ endogenous
- to preserve normality (Dasgupta, 2002):

$$s(A,\varepsilon) = \Phi^{-1}(A) + \varepsilon$$

Equilibrium Definition

Equilibrium: functions (Y, a, A) such that

$$y = Y(\theta, \varepsilon)$$

$$a(x, y) = \arg \max_{a \in [0, 1]} \mathbb{E} \left[U(a, R) \mid x, y \right]$$

$$A(\theta, y) = \int_{x} a(x, y) d\Phi\left(\frac{x - \theta}{\sigma_{x}}\right)$$
$$y = s(A(\theta, y), \varepsilon)$$

where R = 1 iff $A(\theta, y) \ge \theta$

Equilibrium Analysis

- monotone equilibrium: thresholds x^* and θ^* such that
 - agent attacks iff $x \leq x^*(y)$
 - status quo abandoned iff $\theta \leq \theta^*(y)$
- four steps:
 - 1. (aggregation) $x^* \to A, \theta^*, Y$
 - 2. (optimality) $\theta^*, Y \to x^{**}$
 - 3. (fixed point) $x^{**} = x^*$
 - 4. determinacy of Y

Step 1 (Aggregation)

- aggregation: $x^* \to A, \, \theta^*, Y$
- \bullet equilibrium A:

$$A(\theta, y) = \Phi\left(\frac{x^*(y) - \theta}{\sigma_x}\right)$$

• threshold θ^*

$$A(\theta^*(y), y) = \theta^*(y)$$

$$\updownarrow$$

$$x^*(y) = \theta^*(y) + \sigma_x \Phi^{-1} [\theta^*(y)]$$

Step 1 (Aggregation)

• solving for Y...

$$y = \Phi^{-1}(A(\theta, y)) + \varepsilon$$

$$\updownarrow$$

$$x^*(y) - \sigma_x y = \theta - \sigma_x \varepsilon$$

• define correspondence:

$$\mathcal{Y}(z) = \{ y \in \mathbb{R} \mid x^*(y) - \sigma_x y = z \}$$

• $Y(\theta, \varepsilon) \in \mathcal{Y}(\theta - \sigma_x \varepsilon)$

(Information)

• observation of y equivalent to observation of

$$z = Z(y) \equiv x^*(y) - \sigma_x y = \theta - \sigma_x \varepsilon$$

- \rightarrow public signal with noise $\mathcal{N}(0, \sigma_x^2 \sigma_\varepsilon^2)$
- posterior is Normal

$$\sigma_z = \sigma_x \, \sigma_\varepsilon$$

Step 2 (Optimality)

- optimality: $\theta^*, Y \to x^{**}$
- equilibrium payoff:

$$a = 1 \rightarrow EU = Pr [\theta \le \theta^*(y) \mid x, y] - c$$

• threshold x^{**}

$$\Pr\left[\theta \le \theta^*(y) \mid x^{**}(y), y\right] = c$$

$$\updownarrow \text{ (normality)}$$

$$1 - \Phi\left(\frac{1}{\sigma}\left[\delta x^{**}(y) + (1 - \delta)\left(x^{*}(y) - \sigma_{x}y\right) - \theta^{*}(y)\right]\right) = c$$

Step 3 (Fixed Point)

- fixed point: $x^{**} = x^*$
- combining ...
- ... unique equilibrium thresholds x^* and θ^* :

$$\theta^*(y) = \Phi \left[\frac{1}{1 + \sigma_{\varepsilon}^2} y + \sqrt{\frac{\sigma_{\varepsilon}^2}{1 + \sigma_{\varepsilon}^2}} \Phi^{-1} (1 - c) \right]$$

$$x^*(y) = \theta^*(y) + \sigma_x \Phi^{-1} [\theta^*(y)]$$

Step 4 (Determinacy of Y)

ullet solving for the equilibrium signal Y...

$$x^*(y) - \sigma_x y = z$$

$$\updownarrow$$

$$F(y) \equiv \Phi\left(\frac{1}{1+\sigma_{\varepsilon}^2}y + \Lambda\right) + \sigma_x \left[-\frac{\sigma_{\varepsilon}^2}{1+\sigma_{\varepsilon}^2}y + \Lambda\right] = z$$

- $\mathcal{Y}(z)$ non-empty
- $\sigma_{\varepsilon}^2 \sigma_x \geq (2\pi)^{-1/2} \Rightarrow \mathcal{Y}(z)$ single-valued for all z
- $\sigma_{\varepsilon}^2 \sigma_x < (2\pi)^{-1/2} \Rightarrow \mathcal{Y}(z)$ three values for $z \in (\underline{z}, \overline{z})$

Results

Proposition. multiple equilibria iff

$$\sigma_{\varepsilon}^2 \sigma_x < (2\pi)^{-1/2}$$

multiplicity only in Y, not in x^* and θ^*

- small noise → multiple equilibria
- large noise → unique equilibrium
- no perturbation argument for uniqueness

Non-Simultaneous Signal

- avoid RE fixed point → simple dynamics
- "early" and "late" movers
 - early move first \rightarrow only private signals
 - late move second \rightarrow also public signal $s(A_{early}, \varepsilon)$
- equilibrium game-theoretic
- similar results as before

Morris-Shin and Common-Knowledge Limits

Proposition. Morris-Shin as $\sigma_{\varepsilon} \to \infty$

$$R = 1 \Leftrightarrow \theta \le 1 - c$$

Proposition. common-knowledge outcomes as σ_{ε} or $\sigma_x \to 0$

$$\Pr[R=1|\theta] \to 0 \quad \text{for all } \theta \in (\underline{\theta}, \overline{\theta})$$

$$\Pr[R=1|\theta] \to 1 \quad \text{for all } \theta \in (\underline{\theta}, \overline{\theta})$$

- low σ_{ε} or σ_{x} may introduce multiplicity
- less noise → sunspot volatility
- ullet volatility maximal when either $\sigma_{arepsilon}$ or $\sigma_x o 0$

- ullet uniqueness o comparative static $\sigma_{arepsilon}$ and σ_x
- normalize shock $\varepsilon \leftrightarrow \varepsilon/\sigma_{\varepsilon}$
- outcome

$$R = 1 \quad \Leftrightarrow \quad \theta \le \hat{\theta}(\varepsilon)$$

where $\hat{\theta}(\varepsilon)$ solves

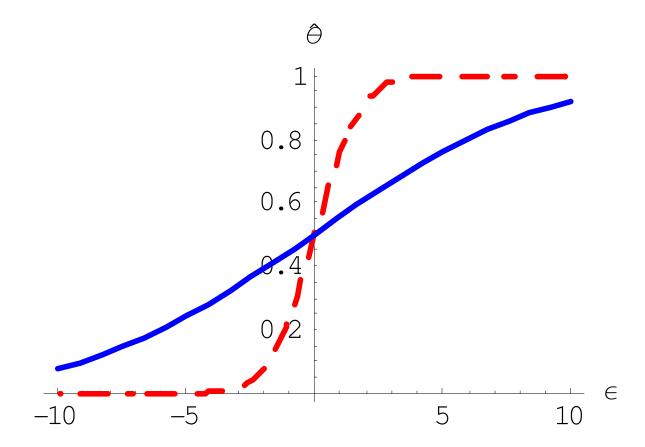
$$\theta = \theta^*(\theta, P(\theta, \varepsilon))$$

• similar for observable actions

• result

$$\hat{\theta}(\varepsilon) = \Phi\left(\frac{1}{\gamma \sigma_{\varepsilon} \sigma_{x}^{2}} \varepsilon\right)$$

- ullet smaller $\sigma_{arepsilon}$ or σ_x
 - \rightarrow more sensitivity of $\hat{\theta}$ to ε
 - \rightarrow more volatility



- comparative statics for price volatility
- equilibrium price:

$$p = f - (\gamma \sigma_{\varepsilon} \sigma_x^2) \widetilde{\varepsilon}$$

- $f = f(\theta) \rightarrow \text{volatility of } f \text{ exogenous}$
- $f = f(A) \rightarrow \text{volatility of } f \text{ depends on } \sigma_x \text{ and } \sigma_\varepsilon$

Proposition. with exogenous dividend, less noise reduces price volatility; but with endogenous dividend, less noise may increase price volatility.

Conclusions

- endogenous information:
 - indicators of aggregate activity
 - financial prices
- results:
 - better private info → better public info
 - multiplicity when noise small
 - less noise → more volatility
- welfare and policy implications