
14.102 Midterm Exam Solutions
October 20, 2005

Real Analysis (15 points)

1. (2 points) Give an example of a bounded sequence with exactly three limit points.

Solution: One example is the sequence {1, 2, 3, 1, 2, 3, 1, 2, 3, ...}, which has the
integers 1,2, and 3 as limit points.

2. (2 points) True or false: every sequence with a limit point is bounded.

Solution: False. For example, the sequence {1, 1, 1, 2, 1, 3, 1, 4, ...} - i.e., an = 1
if n is odd and an =

n
2 if n is even - has 1 as a limit point, but is not bounded.

3. (6 points) Let {A} be a (possibly infinite) collection of convex sets, where A0 ⊆
Rn for all A0 ∈ {A}. Show that the intersection of all the sets in {A} is itself a
convex set.

Solution: Let B = ∩{A}, the intersection of the sets in {A}. Then B is convex
if for any x, y ∈ B and α ∈ R, αx+ (1− α)y ∈ B. So take arbitrary x, y ∈ B.
Because B is the intersection of all the sets in {A}, x and y are both elements
of every set in {A}. For example, if A00 ∈ {A}, then x, y ∈ A00. Because A00

is convex, αx + (1 − α)y ∈ A00. But because A00 was an arbitary element of
{A}, this shows that αx + (1 − α)y ∈ A0 for all A0 ∈ {A}. This implies that
αx+ (1− α)y ∈ B, as was to be shown.

4. (5 points) Let f : U → R be defined on a convex subset U ⊆ R, and let f be
quasiconcave. Define the relation R by

∀x, y ∈ U, xRy ⇐⇒ f(x) ≥ f(y)

Show that ∀x, y, z ∈ U and λ ∈ [0, 1], if xRz and yRz, then (λx+ (1− λ)y)Rz.

Solution: Without loss of generality, suppose xRy, i.e. that f(x) ≥ f(y). Then
f quasiconcave and the hypothesis imply that f(λx+ (1− λ)y) ≥ f(y) ≥ f(z),
i.e. that (λx+ (1− λ)y)Rz.

Linear Algebra (45 points)

5. Let B be the matrix
µ

1
2 −12
−12

1
2

¶
.

(a) (3 points) Find det(B)
Solution: det(B) = 1

4 −
1
4 = 0

(b) (2 points) Find rank(B)

Solution: rank(B) = 1; this is clear either from the fact that its second col-
umn is simply the opposite of its first, or from the fact that its determinant
is zero, and that it is therefore of less than full rank.
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(c) (2 points) Find B−1, if it exists.
Solution: It does not exist, because B is not full rank.

(d) (6 points) Is B diagonalizable? If so, diagonalize B; that is, find diagonal
matrix Λ and nonsingular matrix V such that B = V ΛV −1.

Solution: To diagonalize B, we first find its eigenvalues. We already know
that one of them is zero (because B itself is singular). To find the other, we

write

¯̄̄̄
1
2 − λ −12
−12

1
2 − λ

¯̄̄̄
= 1

4 − λ+ λ2 − 1
4 = λ2 − λ = 0 =⇒ λ = 0 or 1; one is

the other eigenvalue. Therefore, the diagonal matrix Λ is simply
µ
1 0
0 0

¶
.

To find V we need to find eigenvectors associated with these eigenvalues.

For eigenvalue 1, we need a solution to
µ
− 12 −12
− 12 −12

¶µ
x1
x2

¶
=

µ
0
0

¶
. Clearly,µ

1
−1

¶
will solve this equation. For eigenvalue 0, we need a solution to

.
µ

1
2 − 12
−12

1
2

¶µ
x1
x2

¶
=

µ
0
0

¶
, and one solution is

µ
1
1

¶
. So our matrix V

can be
µ
1 1
−1 1

¶
(note that the order of the eigenvectors is determined by

the placement of the eigenvalues in Λ). V −1 = 1
2

µ
1 −1
1 1

¶
, so we can

diagonalize B as B =

µ
1 1
−1 1

¶µ
1 0
0 0

¶µ
1
2 −12
1
2

1
2

¶
.

(e) (3 points) Can B be diagonalized such that B = V ΛV 0, i.e. such that
V 0 = V −1? You do not need to find such V .
Solution: Yes; because B is symmetric we can find an orthonormal diago-
nalization.

(f) (2 points) Show that B is idempotent.

Solution: This is simply a matter of checkingBB =

µ
1
2 −12
−12

1
2

¶µ
1
2 −12
−12

1
2

¶
=µ

1
2 −12
−12

1
2

¶
= B.

(g) (3 points) Is B positive semidefinite, negative semidefinite, or indefinite?
(Hint: no calculations necessary.)
Solution: Any matrix which is symmetric and idempotent is positive semi-
definite. The proof (which was not required for this question) is sim-
ple: for symmetric and idempotent A, x0Ax = x0AAx = x0A0Ax = y0y =Xn

i=1
y2i ≥ 0, where y = Ax.

6. Now let P be any symmetric and idempotent n×n matrix, and let I be the n×n
identity matrix.

Note: if you haven’t already, you’ll soon see these sorts of matrices a lot in
econometrics. P will be a symmetric and idempotent projection matrix (i.e.,
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X(X 0X)−1X 0, which you saw in problem set 2 and which is the projection matrix
onto the space spanned by X) and I − P will be what Greene refers to as the
’residual maker’, and is also a projection matrix onto the null space of P.

(a) (4 points) Show that the matrix I − P is symmetric.
Solution: (I − P )0 = I 0 − P 0 = I − P

(b) (4 points) Show that I − P is idempotent.
Solution: (I − P )(I − P ) = I − P − P + PP = I − P − P + P = I − P

(c) (4 points) Show that P and I − P are orthogonal.
Solution: P 0(I − P ) = P 0 − P 0P = P − PP = P − P = 0; similarly,
(I − P )0P = P − P 0P = P − PP = P − P = 0.

Note: Most of you showed that P (I−P ) = 0. In general, to show that A
and B are orthogonal, you want to show that A0B = 0, i.e. that the columns
of A and B are orthogonal to each other. Note that AB = 0 means that the
rows of A are orthogonal to the rows of B, and might not even be defined;
A and B orthogonal should be a well-defined concept for A m × n and B
m×k (so that their columns are elements of the same vector space). Here,
because P is symmetric, P = P 0 and so P 0(I − P ) = 0⇔ P (I − P ) = 0.

7. Consider the following system of equations, where a33, b1, b2, b3, x1, x2, and x3
are real numbers:

3x1 + 6x2 = b1

6x1 + 3x2 = b2

a33x3 = b3

(a) (3 points) Rewrite the system in matrix notation, as Ax = b (that is, what
are A,x and b?).

Solution:

⎡⎣3 6 0
6 3 0
0 0 a33

⎤⎦⎡⎣x1x2
x3

⎤⎦ =
⎡⎣b1b2
b3

⎤⎦
(b) For each of the following statements, provide conditions on A and/or b such

that the statement is true:

i. (3 points) The system has a unique solution.
Solution: If a33 6= 0, then rank[A, b] = rank[A] = 3; in this case, A is
invertible and the system has the unique solution x = A−1b.

ii. (3 points) The system has no solution.
Solution: If a33 = 0 and b3 6= 0, then rank[A, b] > rank[A] = 2, then
the system has no solution.

iii. (3 points) The system has multiple solutions.
Solution: If a33 = 0 and b3 = 0, then rank[A, b] = rank[A] = 2 < 3,
and the system has multiple solutions.
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Optimization in Rn (40 points)

8. Consider the standard consumer utility maximization problem over two goods,
subject to a linear budget constraint and nonnegative consumption:

maxu(x, y)

s.t. pxx+ pyy ≤ I

x ≥ 0

y ≥ 0

(a) (3 points) Assume throughout that u : R2 → R is continuous and I >
0. What restrictions on the parameters px and py are sufficient for the
Weierstraß theorem to guarantee a solution to this maximization problem?
Solution: It is sufficient that they be strictly positive, such that the region
described by the three constraints is a compact set in the positive quadrant.

(b) (5 points) Assume that these restrictions hold. Show that the rank con-
straint qualification holds at any feasible point.
Solution: The rank constraint qualification holds if [∇h∗(x∗, y∗)], the ma-
trix whose colums are the gradients of the constraints which bind at an
optimum, has full rank at that optimum. The matrix of the gradients of

the constraints is
∙
px 1 0
py 0 1

¸
. Any two columns of this matrix are linearly

independent. Because no more than two of the constraints can bind at an
optimum (if x = y = 0 then pxx + pyy < I), the constraint qualification
will hold.

(c) (4 points) Consider now the dual expenditure minimization problem:

min pxx+ pyy

s.t. u(x, y) ≥ U

x ≥ 0

y ≥ 0

Under what conditions does the level set u(x, y) = U not define y as a
function of x?
Solution: This is the case at any point (x0, y0) such that ∂u

∂y (x0, y0) = 0.
Note that many of the functional forms we employ for utility functions rule
this out.

(d) Assume that the problem is such that an interior solution (x∗, y∗) exists
and u(x, y) = U (the constraint binds) .

i. (4 points) What is y0(x∗), in terms of the utility function (where y(x) is
y implicitly defined as a function of x along the level set u(x, y) = U)?
Solution: y0(x∗) = −∂u/∂x

∂u/∂y (x
∗, y∗), according to the implicit function

theorem.
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ii. (4 points) What is y0(x∗), in terms of the prices px and py?
Solution: y0(x∗) = −px

py

iii. (4 points) Briefly discuss these results in terms of the theorem of La-
grange and economic intuition.
Solution: The theorem of Lagrange tells us that at an interior local
optimum, the gradient of the objective function and that of the con-
straint set are scalar multiples of one another, which in turn implies
that the slopes of their level sets must be equal, as we see in parts (i)
and (ii). The economic intuition of the problem is that at an interior
optimum, the consumer should consume a bundle such that the rate at
which he is willing to trade one good for the other is just equal to the
ratio of their prices.

9. Consider the following constrained optimization problem:

max3xy − x3

s.t. 2x− y = −5
5x+ 2y ≥ 37

x ≥ 0

y ≥ 0

(a) (8 points) Write out the Lagrangian and derive its first order conditions, as
well as the complementary-slackness conditions.
Solution: The Lagrangian is

L(x, y, λ1, λ2, λ3, λ4) = 3xy−x3−λ1(2x−y+5)+λ2(5x+2y−37)+λ3x+λ4y

The first order and complementary slackness conditions are

∂L

∂x
= 3y − 3x2 − 2λ1 + 5λ2 + λ3 = 0

∂L

∂y
= 3x+ λ1 + 2λ2 + λ4 = 0

∂L

∂λ1
= −2x+ y − 5 = 0

λ2(5x+ 2y − 37) = λ3x = λ4y = 0

λ2 ≥ 0, λ3 ≥ 0, λ4 ≥ 0

Note: another way to solve this problem was to begin by substituting
y = 2x+ 5 throughout; solutions of this sort are fine.

(b) (8 points) Find the solution to the maximization problem.
Solution: If x = 0, the function is equal to zero, and if y = 0 the function
is nonpositive; we will begin by assuming that neither of the constraints
x ≥ 0 or y ≥ 0 bind (note that if x > 0, y = 2x+5 > 0). This implies that
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λ3 = λ4 = 0. We will now proceed by examining separately the cases in
which which 5x + 2y ≥ 37 does and does not bind. First, assume that it
does not. This implies that λ2 = 0, and reduces our system to the following
three equations in three unknowns:

3y − 3x2 − 2λ1 = 0 (1)

3x+ λ1 = 0 (2)

2x+ 5 = y (3)

Plugging (2) and (3) into (1) we have

6x+ 15− 3x2 + 6x = 0 (4)

3x2 − 12x− 15 = 0 (5)

x2 − 4x− 5 = 0 (6)

(x− 5)(x+ 1) = 0 (7)

which has roots x = 5, x = −1. We can rule out x = −1 because it doesn’t
satisfy the constraint x ≥ 0. If x = 5, y = 2x + 5 = 15; our first critical
point is (5, 15); f(5, 15) = 100. Note that we can now say (because we have
found a point where f(x, y) > 0) that our intitial assumptions that x > 0
and y > 0 were correct.
Note also that at this optimum, 5x + 2y = 25 + 30 = 55 > 37, and so the
assumption that λ2 = 0 was justified as well. But we can also check that
λ2 > 0: then 5x+ 2y = 37. In this case, a candidate solution must satisfy

2x+ 5 = y (8)

5x+ 2y = 37 (9)

which has the unique solution x = 3, y = 11; f(3, 11) = 72 < 100.

We have shown that (5, 15) is the maximizer among the critical points of
the Lagrangian. We must still verify that the point (5, 15) is indeed the

global maximum. The Hessian is
∙
−6x 3
3 0

¸
; the leading principal minors

are −6x and −9, both of which are strictly negative when x = 5, implying
that (5, 15) is a local maximum. Moreover, note that because y = 2x+ 5,
f = 6x2 + 15x − x3. This function goes to negative infinity as x (and y)
go to infinity; we thus have a global maximum at (5, 15).
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