Handout on the eigenvectors of distinct eigenvalues
9/30/04

This handout shows, first, that eigenvectors associated with distinct
eigenvalues of an abitrary square matrix are linearly indpenent, and sec-
ond, that all eigenvectors of a symmetric matrix are mutually orthogonal.

First we show that all eigenvectors associated with distinct eigenval-
ues of an abitrary square matrix are mutually linearly independent:

Suppose k (k < n) eigenvalues {)\,...,\;} of A are distinct,
and take any corresponding eigenvectors {vy, ..., v;}, defined by
v; # 0,Av; = \jov; for j = 1,...,k. Then, {vy,...,v;} are linearly
independent.

First consider two such eigenvectors. Suppose we have eigenvalue A
with eigenvector v, and eigenvalue p with eigenvector w, A # u. We
will show that av + fw = 0 = a = 8 = 0, implying that v and w are
linearly independent.

So suppose we have

av+ fw=0 (1)
aAv+ fAw=0 (2)
av + Bpw =0 (3)

Now multiply (1) by —A and add to (3) to get

Blp—=Nw=0 (4)

This implies that 8 = 0, and plugging this back into (1) implies that
a =0 as well.

Now consider any three eigenvectors (v, w and u) with with distinct
eigenvalues (A, i, and v); we proceed in much the same manner:

av + pw +yu=0 (5)
aAv + fAw + yAu=0 (6
(
(

\]
~—r

alv + Bpw + yvu =0
Blp—Nw+~y(v—=ANu=0

)
8)

But this is a linear combination of two eigenvectors, and we have just
shown that they must be linearly independent. So we have § =~y =0,
which implies that a = 0 as well.

We can continue in this manner to show that any £ eigenvectors with
distinct eigenvalues are linearly indpendent.
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Now we want to show that all the eigenvectors of a symmetric matrix
are mutually orthogonal.

Suppose k (k < n) eigenvalues {\,...,\;} of A are distinct
with A symmetric, and take any corresponding eigenvectors
{v1, ..., v}, defined by v; # 0,Av; = \ju; for j = 1,...,k. Then,
{v1,...,vx} are orthogonal.

To see this, suppose v is an eigenvector for A\ and w is an eigenvector
for p. Then

w' Av = \w'v
and
w'Av = pw'v

(where the second equation is derived by taking the transpose of

Aw = pw and postmultiplying by v). Thus,

0=(\—p)w'v

implying that w'v = 0, or that w and v are orthogonal.

If we have repeated eigenvalues, we can still find mutually orthogonal
eigenvectors (though not every set of eigenvectors need be orthogonal).

We have

Av=\v
Aw = w

It is not necessarily true that w'v = 0 for arbitrary solutions to these
equations; however, we can choose a linear combination of v and w which
is still an eigenvector, and which is orthogonal to w. Simply multiply
the first equation above by «, and the second by 3 (two scalars), and
add to get

Alaw + pw) = AMaw + pw)

Clearly (av + fw) is an eigenvector. Now we want to choose o and
B so that (av + fw)'w = 0:
(av" + pu)w=0

av'w + fw'w=0
Sw'w

a=——
v'w

Which exists as long as v'w # 0, which is the case we were concerned
with.



