Handout on the eigenvectors of distinct eigenvalues 9/30/04

This handout shows, first, that eigenvectors associated with distinct eigenvalues of an abitrary square matrix are linearly indpenent, and second, that all eigenvectors of a symmetric matrix are mutually orthogonal.

First we show that all eigenvectors associated with distinct eigenvalues of an abitrary square matrix are mutually linearly independent:

Suppose $k(k \leq n)$ eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ of A are distinct, and take any corresponding eigenvectors $\left\{v_{1}, \ldots, v_{k}\right\}$, defined by $v_{j} \neq 0, A v_{j}=\lambda_{j} v_{j}$ for $j=1, \ldots, k$. Then, $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent.

First consider two such eigenvectors. Suppose we have eigenvalue λ with eigenvector v, and eigenvalue μ with eigenvector $w, \lambda \neq \mu$. We will show that $\alpha v+\beta w=0 \Rightarrow \alpha=\beta=0$, implying that v and w are linearly independent.

So suppose we have

$$
\begin{align*}
\alpha v+\beta w & =0 \tag{1}\\
\alpha A v+\beta A w & =0 \tag{2}\\
\alpha \lambda v+\beta \mu w & =0 \tag{3}
\end{align*}
$$

Now multiply (1) by $-\lambda$ and add to (3) to get

$$
\begin{equation*}
\beta(\mu-\lambda) w=0 \tag{4}
\end{equation*}
$$

This implies that $\beta=0$, and plugging this back into (1) implies that $\alpha=0$ as well.

Now consider any three eigenvectors (v, w and u) with with distinct eigenvalues $(\lambda, \mu$, and $\nu)$; we proceed in much the same manner:

$$
\begin{align*}
\alpha v+\beta w+\gamma u & =0 \tag{5}\\
\alpha A v+\beta A w+\gamma A u & =0 \tag{6}\\
\alpha \lambda v+\beta \mu w+\gamma \nu u & =0 \tag{7}\\
\beta(\mu-\lambda) w+\gamma(\nu-\lambda) u & =0 \tag{8}
\end{align*}
$$

But this is a linear combination of two eigenvectors, and we have just shown that they must be linearly independent. So we have $\beta=\gamma=0$, which implies that $\alpha=0$ as well.

We can continue in this manner to show that any k eigenvectors with distinct eigenvalues are linearly indpendent.

Now we want to show that all the eigenvectors of a symmetric matrix are mutually orthogonal.

Suppose $k(k \leq n)$ eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ of A are distinct with A symmetric, and take any corresponding eigenvectors $\left\{v_{1}, \ldots, v_{k}\right\}$, defined by $v_{j} \neq 0, A v_{j}=\lambda_{j} v_{j}$ for $j=1, \ldots, k$. Then, $\left\{v_{1}, \ldots, v_{k}\right\}$ are orthogonal.

To see this, suppose v is an eigenvector for λ and w is an eigenvector for μ. Then

$$
w^{\prime} A v=\lambda w^{\prime} v
$$

and

$$
w^{\prime} A v=\mu w^{\prime} v
$$

(where the second equation is derived by taking the transpose of $A w=\mu w$ and postmultiplying by v). Thus,

$$
0=(\lambda-\mu) w^{\prime} v
$$

implying that $w^{\prime} v=0$, or that w and v are orthogonal.
If we have repeated eigenvalues, we can still find mutually orthogonal eigenvectors (though not every set of eigenvectors need be orthogonal).

We have

$$
\begin{aligned}
A v & =\lambda v \\
A w & =\lambda w
\end{aligned}
$$

It is not necessarily true that $w^{\prime} v=0$ for arbitrary solutions to these equations; however, we can choose a linear combination of v and w which is still an eigenvector, and which is orthogonal to w. Simply multiply the first equation above by α, and the second by β (two scalars), and add to get

$$
A(\alpha v+\beta w)=\lambda(\alpha v+\beta w)
$$

Clearly $(\alpha v+\beta w)$ is an eigenvector. Now we want to choose α and β so that $(\alpha v+\beta w)^{\prime} w=0$:

$$
\begin{aligned}
\left(\alpha v^{\prime}+\beta w^{\prime}\right) w & =0 \\
\alpha v^{\prime} w+\beta w^{\prime} w & =0 \\
\alpha & =-\frac{\beta w^{\prime} w}{v^{\prime} w}
\end{aligned}
$$

Which exists as long as $v^{\prime} w \neq 0$, which is the case we were concerned with.

