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This handout shows, first, that eigenvectors associated with distinct
eigenvalues of an abitrary square matrix are linearly indpenent, and sec-
ond, that all eigenvectors of a symmetric matrix are mutually orthogonal.
First we show that all eigenvectors associated with distinct eigenval-

ues of an abitrary square matrix are mutually linearly independent:
Suppose k (k ≤ n) eigenvalues {λ1, ..., λk} of A are distinct,

and take any corresponding eigenvectors {v1, ..., vk}, defined by
vj 6= 0, Avj = λjvj for j = 1, ..., k. Then, {v1, ..., vk} are linearly
independent.
First consider two such eigenvectors. Suppose we have eigenvalue λ

with eigenvector v, and eigenvalue µ with eigenvector w, λ 6= µ. We
will show that αv + βw = 0 ⇒ α = β = 0, implying that v and w are
linearly independent.
So suppose we have

αv + βw=0 (1)

αAv + βAw=0 (2)

αλv + βµw=0 (3)

Now multiply (1) by −λ and add to (3) to get

β(µ− λ)w = 0 (4)

This implies that β = 0, and plugging this back into (1) implies that
α = 0 as well.
Now consider any three eigenvectors (v, w and u) with with distinct

eigenvalues (λ, µ, and ν); we proceed in much the same manner:

αv + βw + γu=0 (5)

αAv + βAw + γAu=0 (6)

αλv + βµw + γνu=0 (7)

β(µ− λ)w + γ(ν − λ)u=0 (8)

But this is a linear combination of two eigenvectors, and we have just
shown that they must be linearly independent. So we have β = γ = 0,
which implies that α = 0 as well.
We can continue in this manner to show that any k eigenvectors with

distinct eigenvalues are linearly indpendent.
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Now we want to show that all the eigenvectors of a symmetric matrix
are mutually orthogonal.
Suppose k (k ≤ n) eigenvalues {λ1, ..., λk} of A are distinct

with A symmetric, and take any corresponding eigenvectors
{v1, ..., vk}, defined by vj 6= 0, Avj = λjvj for j = 1, ..., k. Then,
{v1, ..., vk} are orthogonal.
To see this, suppose v is an eigenvector for λ and w is an eigenvector

for µ. Then
w0Av = λw0v

and
w0Av = µw0v

(where the second equation is derived by taking the transpose of
Aw = µw and postmultiplying by v). Thus,

0 = (λ− µ)w0v

implying that w0v = 0, or that w and v are orthogonal.
If we have repeated eigenvalues, we can still find mutually orthogonal

eigenvectors (though not every set of eigenvectors need be orthogonal).
We have

Av=λv

Aw=λw

It is not necessarily true that w0v = 0 for arbitrary solutions to these
equations; however, we can choose a linear combination of v and w which
is still an eigenvector, and which is orthogonal to w. Simply multiply
the first equation above by α, and the second by β (two scalars), and
add to get

A(αv + βw) = λ(αv + βw)

Clearly (αv + βw) is an eigenvector. Now we want to choose α and
β so that (αv + βw)0w = 0:

(αv0 + βw0)w=0

αv0w + βw0w=0

α=−βw
0w

v0w

Which exists as long as v0w 6= 0, which is the case we were concerned
with.
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