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1 The Basics: Vectors, Matrices, Matrix Oper-
ations

1.1 Vectors

An n-dimensional real vector x = (x1, ..., xn) ∈ Rn is an ordered n-tuple of
real numbers. As a matter of notational convention, whenever we talk of an
n-dimensional vector we mean a column vector; that is, a single column of n
rows:

x = [xi]i=1,...,n =

⎡⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎦
Letting a prime (0) denote the transpose, a row vector is simply the transpose
of a column vector:

x0 = [x1 x2 ... xn]

For the set of all real vectors we may define summation and scalar multi-
plication, as well as inner product, in the ordinary way. Then, the set of all
real vectors x ∈ Rn is a linear vector space, and endowed with the Euclid-
ean distance/norm forms our well known n-dimensional Euclidean vector
space.1

Definition 1 A triple (V,+, ·) consisting of a set V , addition +:

V × V → V

(x, y) → x+ y

1For more details on vector spaces and Euclidean spaces, see Takayama (1993), ch. 1;
Simon and Blume (1994), chs. 10 & 27; or the MathCamp notes by Peter and Leeat. ♠
ed.note: It is so convinient to transfer responsibility to somebody else! :-)
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and multiplication ·:

R× V → V

(λ, x) → λ · x

is called a real vector space if the following 8 conditions hold:
1. (x+ y) + z = x+ (y + z) for all x, y, z in V.
2. x+ y = y + x for all x, y in V.
3. There is an element 0 ∈ V (called the zero vector) such that x + 0 = x

for any x.
4. For each element x ∈ V , there is an element −x ∈ V such that x+(−x) =

0.
5. λ · (µx) = (λµ) · x for all λ, µ ∈ R, x ∈ V.
6. 1 · x = x for all x ∈ V.
7. λ · (x+ y) = λ · x+ λ · y for all λ ∈ R, x, y ∈ V.
8. (λ+ µ) · x = λ · x+ µ · x for all λ, µ ∈ R, x ∈ V.

1.2 Matrices

A real matrix is defined as a rectangular array of real numbers.2 In particular,
the matrix

A = [aij ]
j=1,...,n
i=1,...,m =

⎡⎢⎢⎣
a11 a12 ... a1n
a21 a22 ... a2n
... ... ...
am1 am2 ... amn

⎤⎥⎥⎦
for aij ∈ R ∀i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n} and m,n ∈ N∗ = {1, 2, ...}, is a
matrix of dimensions m×n. More compactly we write this matrix as A = [aij ].
Notice that, just as an n-dimensional (real) vector x = (x1, ..., xn) ∈ Rn is

an ordered set or ordered n-tuple of real numbers, an m×n matrix is an ordered
set or ordered n-tuple of m-dimensional vectors. Thus, we may write a matrix
as an array of column vectors

A = [aj ] = [a1 a2 ... an]

with the understanding that aj = (a1j , a2j , ..., amj) ∈ Rm is an m-dimensional
column vector for all j = 1, .., n.

2 In most of our discussion we restrict focus to matrices over the set of real numbers, R.
All notions, however, can be extended to the complex plane, C, or any arbitrary field. It’s a
good exercise for the reader to check what (if any) would have to change should, throughout
this text, we had set C wherever R appears.
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1.3 Matrix Transpose

The transpose A0 of an m × n matrix A = [aij ] is an n ×m matrix defined
simply as

A0 = [aji] =

⎡⎢⎢⎣
a01
a02
...
a0n

⎤⎥⎥⎦ =
⎡⎢⎢⎣

a11 a21 ... am1
a12 a22 ... am2
... ... ...
a1n a2n ... amn

⎤⎥⎥⎦
1.4 Matrix Addition and Scalar Multiplication

The set of all matrices of the same dimensions forms a vector space. This
requires only that we appropriately define matrix addition and scalar multi-
plication:

Definition 2 Take any m×n matrices A = [aij ], B = [bij ], C = [cij ], and any
real scalars λ, µ. We define matrix addition as

C = A+B ⇔ cij = aij + bij ∀i, j

and scalar multiplication as

C = λA ⇔ cij = λaij ∀i, j

We can then easily show the following properties:

Lemma 3 Matrix addition and scalar multiplication, defined as above, satisfy:

(i)Commutative Law: A+B = B +A
(ii)Associative Law: (A+B) + C = A+ (B + C)
(iii)Distributive Law: (λ+ µ)A = λA+ µA
(iv)Distributive Law: λ(A+B) = λA+ λB
(v)Distributive Law: λ(µA) = (λµ)A

It then follows that:

Proposition 4 The set of all m×n real matrices endowed with matrix addition
and scalar multiplication forms a linear vector space.

Exercise 5 Persuade yourself that you can prove Lemma 3 and Proposition 4
from first principles.

1.5 Matrix Multiplication

Let A and B be matrices. The matrix product of A and B (denoted AB) is
defined when A ism×n and B is n×p. When this holds (i.e., there are as many
columns in A as there are rows in B), we say that A and B are conformable.
The i, kth element of AB is then given by

(AB)ik =
nX
j=1

aijbjk
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and AB is an m× p matrix.

Matrix multiplication satsfies the following properties:

Lemma 6 Provided dimension conformity, matrix multiplication satisfies:

(i)Associative Law: (AB)C = A(BC)
(ii)Associative Law: (λA)B = λ(AB)
(iii)Distributive Law: A(B + C) = AB +AC
(iv)Distributive Law: (A+B)C = AC +BC

Note that if AB exists, BA need not be definted; even if it does exist, it is
not generally true that AB = BA (when this is true, we say that A and B are
commuting). This is why we need both (iii) and (iv) above; the first distributive
law deals with pre-multiplication of a matrix sum by another matrix, while the
second deals with post-multiplication of a matrix sum with another matrix.

1.6 Special Matrices

Definition 7 An m× n matrix A is called square if m = n.
A matrix A is symmetric if A0 = A, or equivalently aij = aji ∀i, j. This

imposes that A is square.
A matrix A is upper triangular if it is square and aij = 0 for j = i+1, ..., n

and i = 1, ..., n− 1. And A is lower triangular iff A0 is upper triangular.
A matrix A is diagonal if it is both upper and lower triangular; equivalently,

iff aij = 0 for i 6= j.
The null matrix (denoted 0) is defined by the relation:

A+ (−1)A = 0, or equivalently, A+ 0 = A

It can thus take any dimension (it must have the same dimension as
A), and is the matrix with all elements equal to zero.
The identity matrix (denoted I) is defined by the relation:

IA = AI = A

It is the diagonal matrix with ones on its diagonal, and takes the di-
mension necessary for conformability (that is, if A above is m× n, I is m×m
in the first part of the above relation and n× n in the second part).

1.7 Transpose Rules

Lemma 8 The following rules hold for matrix transposes:

(A0)0 = A

(A+B)0 = A0 +B0

(AB)0 = B0A0

A0A 6= AA 6= A0A0 in general, but

A0A = AA = A0A0 for symmetric A
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Note that AB defined ⇒ (AB)0 = B0A0 defined.

Exercise 9 Find examples illustrating the above facts.
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