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2 Real Analysis IT - Sets and Functions

2.1 Sequences and Limits

The concept of a sequence is very intuitive - just an infinite ordered array of
real numbers (or, more generally, points in R™) - but is defined in a way that
(at least to me) conceals this intuition.

One point to make here is that a sequence in mathematics is something infi-
nite. In our everyday language, instead, we sometimes use the word ”sequence”
to describe something finite (like ”sequence of events”, for example).

Definition 31 A (finite) number A is called the limit of sequence {ay} if Ve > 0
AN :Vn > N |a, — A| < e. If such number A exists, the sequence is said to be
convergent.

Verbally, A is the limit of {a,} if the sequence comes closer and closer to A
as N grows and, moreover, stays close to A "forever”. Of course, such A does
not have to exist, as the following simple example shows:

Example 32 Let a, = (—1)". Then {a,} does not have any limit.

That is, a sequence does not have to converge to any single point (for exam-
ple, it can oscillate between two different points). However, what it surely can
never do is to converge to two distinct points at a time:

Lemma 33 A sequence can have at most one limit.

Definition 34 Sequence {a,} is said to converge to oo (with no sign) if YC
AN :Vn > N |a,| > C.

Our next step is to capture the fact that even a divergent (i.e., noncon-
vergent) sequence can still have ”frequently visited” or ”concentration” points -
points to which infinitely many terms of the sequence are ”close”. This intuition
is captured in



Definition 35 A (finite) number B is called a limit point of {an} if Ve > 0
VN3n > N: l|a, — B| <e.

Exercise 36 Find all limit points of the sequence in the sequence {a,} with
an = (—=1)"™. Recall that this sequence has no limit..

Exercise 37 The only limit point of a convergent sequence is its limit.
Example 38 The converse does not hold: consider sequence 1,12, %, 3, %, 4, %,

R
ete. Its only limit point is 0 (why?) but it does not converge to it.

Exercise 39 Define the meaning of oo being a limit point of a sequence.

To be convergent is a strong condition on {a,}; to have a limit point is a
weaker condition. The price you have to pay for relaxing this (or any) condition
is that now more points will fit - for example, a sequence can have only one
limit (which adds some desired definitiveness to the concept) but multiple limit
points. What you hope to get in return is that more sequences have limit points
than have limits'. To make an exact statement we need one more

Definition 40 Sequence {a,} is called bounded if 3C :Vn l|a,| < C
Exercise 41 FEvery convergent sequence is bounded.

Now we are ready for
Theorem 42 (Bolzano-Weierstraf$) Every bounded sequence has a limit point.

This theorem is often stated as 'Every bounded sequence has a convergent
subsequence.” The idea is simple: if a sequence has a limit point, then we
know that no matter how far out into the sequence we get, we always return to
an arbitrarily small neighborhood of the limit point eventually (before possibly
leaving again, and returning, and leaving...). So we can construct an infinite
subsequence, selecting only the points sufficiently close to the limit point, which
in fact converges to the limit point as its limsit.

2.2 Cauchy Sequences

The 'Cauchy method’ is often useful in establishing the convergence of a given
sequence, without necessarily defining the limit to which it converges.

Definition 43 A sequence {p,} in a metric space X is said to be a Cauchy
sequence if for every ¢ > 0 there is an integer N such that d(p,,pm) < € if
n>N and m > N.

LA similar tradeoff arises in game theory: we can use strictly dominant strategies or Nash
equilibrium as a solution concept; the former is more definite and probably more appealing,
but need not (and in most interesting cases does not) exist; the latter always exists (for finite
games at least) but need not be unique and deserves further justification. Now that, after a
number of years in economics, I have finally learned the fundamental concept of tradeoff, I
am amazed to see in how many instances it is applicable in math.



Theorem 44 1. In any metric space X, every convergent Sequence s a
Cauchy sequence.

2. In R*, every Cauchy sequence converges.
Proof.

1. If p, — p and if € > 0, there is an integer N such that d(p,p,) < € for all
n > N. Hence

A(PnsPm) < d(p,pn) + d(p, ) < 2¢
as long asn > N and m > N. Thus {p,} is a Cauchy sequence.

2. (Sketch) The full proof requires concepts that we won’t go into, but it can
be found in Rudin, Theorem 3.11. The idea of the proof is that if {p,} is
Cauchy, then we know that there is an integer N such that d(ppn,pm) < €
ifn>Nand m > N. Letn > N, for the N in the hypothesis. Then

d(Pn, Pn+1) < € d(Pnt1,Pn+2) < € ooy d(Prtis Prtit1) < € for all i > 0.
By the triangle inequality, d(pn, Dntit1) < Z;:O Ad(Pntis Pntit1) < ie. So
the sequence is ‘converging’ to a ‘limit” of p,. Of course, the “sketchiness’
of this proof arises in the fact that p, is not necessarily the limit of the
sequence, and that we run into trouble with this argument when we let n
go to infinity - but this gives about the right intuition.

2.3 Open and Closed Sets

For the rest of the analysis we stick to the Euclidean metric on R" : d(z,y) =
d2 (.’E, y) .

Definition 45 For any xo € R™ and r > 0 define an open ball B.(z) = {z €
R™d(x,x0) < T}

Exercise 46 What do open balls in R% and R? look like? What would they look
like if we fized another metric (dy or ds) instead of da?

Definition 47 Set A C R" is called open if, together with any point xg € A,
it contains a small enough open ball B.(xg) for some € > 0.

Example 48 An open ball is an open set (why?)
Example 49 The half-space {x € R™ : 21 > 0} is open

Exercise 50 The union of any (not necessarily finite) number of open sets is
open; the intersection of two (or any finite number of ) open sets is open.

Example 51 Let A, = {—% <z < %} Persuade yourself that A,, is open for
all n. What is the intersection of all A,,n =1,2,...7 Show that it is not open.
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Definition 52 A point p is a limit point of a set C if every open ball centered
at p contains a point q % p such that q € C.

Definition 53 Set C is called closed if it contains all its limit points.

Lemma 54 A set C is closed if and only if its complement is open.
Proof. First, suppose C€¢ is open. Let x be a limit point of C. Then every
open ball centered at x contains a point of C, so that x is not an interior point
of C¢. Since C° is open, this means that x € C. It follows that C is closed.
Second, suppose that C is closed. Choose x € C°. Thenz ¢ C, and x is not
a limit point of C. Hence there exists an open ball B,.(x) such that C' N B,(x)
is empty, which implies B, (x) C C¢. Thus, x is an interior point of C¢; being
true for all x € C¢, this means that C¢ is open. W

Example 55 A closed ball B,.(xg) = {x € R"|d(z,x0) < 1} is a closed set.

Definition 56 If X is a metric space, if E C X, and if E' denotes the set of
all limit points of E in X, then the closure of E is the set EUFE'.

Exercise 57 Show that empty set () and the entire space R™ are both open and
closed. Persuade yourself that these two are the only sets which are both open
and closed.

Definition 58 A set in R™ is called compact if it is closed and bounded.

This is not the traditional definition of compactness that you will find in a
textbook — in spaces more general than R™ it will not work (that is, in those
spaces there exist closed and bounded sets which will not be compact). However,
in R™ it will work fine: whatever definition of compactness you will ever see, it
will be equivalent to the one above.

2.4 Convexity (sets) and Separating Hyperplanes

There is a branch of real analysis which plays a relatively modest role in pure
mathematics, but is an enormously powerful device in economics. It has to do
with the notion of convexity.

Unlike topological concepts such as open, closed and compact sets (which in
principal require very little structure on the space), convexity makes use of a
linear structure.

Definition 59 A convexr combination of points x and y in R™ is any point z
that can be expressed as z = ax + (1 — &)y for some real number « € [0, 1].

The set of all convex combinations of two given points is the closed segment
between them.

Definition 60 A set A C R"™ is called convex if, together with any two points
x,y € A it contains all their convex combinations.
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Ezxercise 61 Show that an intersection of (even infinitely many) convex sets is
CONVEL.

Definition 62 The convex hull, denoted conv(A), of set A is the intersection
of all convex sets that contain A. It is the smallest convex set containing A?

Example 63 An open (or closed) ball is a convex set.
Example 64 The half-space is a convex set.

Definition 65 Let p # 0 be a vector in R™,and let a € R. The set H defined by
H={zeR"|p-z=a} is called a hyperplane in R™. We denote it by H(p,a).

Hyperplanes in R? are straight lines, hyperplanes in R? are usual planes and,
generally, hyperplanes in R™ are spaces of dimension n — 1.

The key result (which is indispensable for the second welfare theorem and a
variety of other economic results) is the following

Theorem 66 (Separating Hyperplane Theorem) Let C' be a nonempty convex
set in R™ and let x* be a point in R™ that is not in C. Then there exists a
hyperplane H(p,a) that separates C and z*, i.e., such that p-y < a for all
yeC andp-z* > a.

Ezxercise 67 Nonstrict inequalities (< and >) are essential and can not, in
general, be replaced by strict inequalities (< and >). Construct an example of
a convex set and a point outside it that can not be strictly separated.

A slightly more general result is

Theorem 68 Let C; and Cy be two disjoint (i.e., C1 N Cy = 0) convex sets in
R™. Then there exists a hyperplane H(p,a) that separates Ciand Cs, i.e., such
thatVx € C1 p-x<a andVy € Cs p-y > a.

Example 69 Any point on the contract curve in the Edgeworth box is a Wal-
rasian equilibrium with an appropriate price vector, as soom as preferences are
concave.

Exzample 70 The optimal (from the central planning standpoint) production/consumption
choice in a Robinson Crusoe economy can be supported as a decentralized equi-

librium, as long as the production possibility set is convex and preferences are

concave.

2Likewise, since the intersection of any number of closed sets is closed, we can define the
closure of set A as the intersection of all closed sets containing A, which will then be the
smallest closed superset of A. However, it is straightforward to see that, in general, there will
be no such thing as the smallest open set containg A (think, for example, of A = {0}).
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2.5 Functions

Typically mathematicians rely on the notion of a function as being built in to
general perception of abstract mathematical objects, which means that they do
not bother to rigorously define it. However, given Kantor’s program of redefining
everything in terms of sets only, functions also needed to be so defined. And
the way Kantor did it was simple: he just identified a function with its graph.
Namely, a function (for example, from R™ to R™) is a subset graph(f) of the
Cartesian product R™ x R™ with one restriction that any € R™ may be mapped
only to one y € R™ i.e., that (z,y1) € F&(z,y2) € F = y1 = y2. This last
property allows us to define y = y(x) unambiguously.

Note that according to the definition above a function does not have to map
the entire space R™ to R™, i.e., it does not have to be the case that Vx € R”
Jy € R™ such that (z,y) € graph(f). If such y does exist for a given x (in which
case it is unique by definition), we say that = belongs to the domain of f.

Exercise 71 Find the domains of the following functions f: R — R :

1. f(z) =z
2. f(z) = s
3. f(2) = gz + oz

A subset of R™ x R™ can easily be converted to a subset of R™ x R™ by
switching coordinates. The resulting subset does not have to be a function (in
the sense that there does not have to be unique x associated with each y), but
if it is a function it is called the inverse function and is denoted f~*(y).

The above definitions are quite abstract, but the main idea of a function is
probably clear to everybody.

The concept of a function (usually in terms of one variable being uniquely
determined by another, in our case y being determined by z) has been under-
stood for a very long time, by the ancient Greeks at least (although they did not
quite operate in terms of variables, let alone using letters to denote variables,
which was introduced by a French mathematician Vieta in late XVI century for
purposes entirely different from those we use them for nowadays). The birth
of modern calculus is dated back to Newton and Leibniz I think (in the mid
XVII century) and the fundamental notion they managed to give a formal defi-
nition for was continuity. Informally, a continuous function is a function, whose
graph we can draw in one touch of a pencil, without taking it off the paper.
Although intuitively quite appealing, this “definition” is not operative, so we
need a formal (and, of course much less intuitive) one:

Definition 72 A function f: X C R™ — R™ is said to be continuous at point
xg € X if Ye > 030 > 0 such that Vo € Bs(zo), f(r) € Bo(f(x0)) C R™. A
function is said to be continuous on X if it is continuous at each point of X.
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-1, <0

Example 73 f(z) = sign(z) = 0, =0 s continuous at all points
1, x>0
except 0.
1, z€Q . . o
Example 74 D(z) = 0, z¢Q not continuous anywhere (it is called

Dirichlet function after another French mathematician Lejeune Dirichlet, 1805-
1859)

Example 75 g(z) = 2D(z), where D(x) is Dirichlet function defined above, is
continuous at xg = 0 and nowhere else.
Example 76 R(z) — { %, T = %, with minimum possible p and q
; z¢Q
tinuous at all irrational points © ¢ Q and not continuous at rational points

(it is called Riemann function after a German mathematician Georg Riemann,
1826-1866).

18 con-

o

Exercise 77 Make sure that you fully understand the examples above.

Example 78 Usual functions are continuous on their domains: In, exp, sin,
cos, polynomials, radicals.

Lemma 79 A sum, a difference and a product of two continuous functions are
continuous; a ratio of two continuous functions is continuous at all points where
the denominator does not vanish.

Let f be a strictly increasing continuous function on [a, b] then f([a,b]) =
[f(a), f(b)] and f is a one-to-one function from [a,b] onto [f(a), f(b)].
Then the inverse f~! is a one-to-one function from [f(a), f(b)] onto [a, b].

Theorem 80 If f is continuous and increasing then so is f~ 1.

Draw graph and note that f and f~! are symmetric with respect to the 45°
line.

Definition 81 A function on I = [a,b] bounded interval is piece-wise con-
tinuous if it is continuous everywhere except on a finite number of points in I
and that at every point where it is not continuous it admits left and right limits.

2.6 Fixed-Point Theorems

Theorem 82 Intermediate Value Theorem Let f be a continuous func-
tion on a closed interval [a,b]. Then for any m in the interval [f(a), f(b)] or
(1f(®), f(a)]), there is some ¢ € [a,b] such that f(c) =m.
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Proof. Suppose f(a) < f(b). Let S = {z € [a,b]|f(x) < m}, S non empty and
bounded. So consider ¢ = sup S. Take z,, converging to ¢, of course f(z,) < m
so f(¢) < m. Now take z, > ¢ converging to c¢. f(z,) > m so the limit

fle)>m. So f(c)=m. m

Example: existence of an equilibrium price. If Supply(0) = Demand(+o0)

0 and Supply(+ooc) = Demand(0) = +oo then Jp such that Supply(p) =
Demand(p).

This example is related to fixed point theorems:

Theorem 83 (Brouwer’s) Let A be a convex and compact subset of R (or R™)
and let f : A — A be a continous function. Then, there exists a fized point of f
that is a point x € A such that

flz)=2

A set A C R"™ is called convex if a,b € A implies that the entire segment
between a and b is contained in A.

Theorem 84 (Tarski’s) Let A be a set with ordering < such that each subset
of A has a sup and an inf. Let f : A — A be monotonic (weakly increasing or
decreasing). Then, f has a fized point.

Theorem 85 (Banach’s) Let A be a space with metrics d(-,-) and f : A — A
be a contraction that is there exists A € (0,1) such that

d(f (@), f(y) <Ad(z,y).
Then, f has a unique fized point.

A version of the Brouwer theorem (Kakutani’s) is used to prove the existence
of Nash equilibria in many games. Tarski’s theorem is used to prove existence
of equilibria of supermodular games. Banach’s theorem is the workhorse of the
theory of differential equations that will be studied in 14.102.
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