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2.7 Continuity and Upper/Lower Hemicontinuity

Kakutani’s fixed point theorem weakens the conditions of Brouwer’s theorem
so that it applies to more games - indeed, to all finite strategic-form games.
’Finite’ refers to the number of players and the actions they have to choose
from; Glenn will go over this, as well as the distinction between strategic-form
and extensive-form games, in more detail. He will also discuss how such games
are interpreted to fit the conditions of the theorem. For now, our concern is to
achieve an understanding of those conditions.
Kakutani’s theorem is as follows:

Theorem 86 (Kakutani) Let Σ be a compact, convex, nonempty subset of a
finite-dimensional Euclidean space, and r : Σ⇒ Σ a correspondence from Σ to
Σ which satisfies the following:

1. r(σ) is nonempty for all σ ∈ Σ.

2. r(σ) is convex for all σ ∈ Σ.

3. r(·) has a closed graph.

Then r has a fixed point.

Everything in this theorem is familiar from our previous discussion, with
the exception of the third requirement for r, that it have a closed graph. This
property is also referred to as upper-hemi continuity.

Definition 87 A compact-valued correspondence g : A ⇒ B is upper hemi-
continuous at a if g (a) is nonempty and if, for every sequence an → a and
every sequence {bn} such that bn ∈ g(an) for all n, there exists a convergent
subsequence of {bn} whose limit point b is in g(a).
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In words, this says that for every sequence of points in the graph of the
correspondence that converges to some limit, that limit is also in the graph of
the correspondence. This means that we don’t ’lose points’ in our graph at the
limit of a convergent sequence of points in the graph, and important property
for ensuring that we have a fixed point.

There is also a property called lower hemi-continuity:

Definition 88 A correspondence g : A⇒ B is said to be lower hemi-continuous
at a if g(a) is nonempty and if, for every b ∈ g(a) and every sequence an → a,
there exists N ≥ 1 and a sequence {bn}∞n=N such that bn → b and bn ∈ g(an)
for all n ≥ N .

In words, this says that for every point in the graph of the correspondence,
if there is a sequence in A converging to a point a for which g(a) is nonempty,
then there is also a sequence in B converging to b ∈ g(a), and that every point
bn in that sequence is in the graph of an.
Together, these two give us continuity:

Definition 89 A correspondence g : A ⇒ B is continuous at a ∈ A if it is
both u.h.c and l.h.c. at a.

2.8 Convexity (functions)

Definition 90 Let f : I −→ R be a function on the interval I. f is convex iff
for any x and y in I and any 0 < λ < 1

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

f is concave iff for any x and y in I and any 0 < λ < 1

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

Some seful facts:
- f is concave iff −f is convex (and similarly for strictly concave/convex)
- the sum of convex functions is convex.
- the sum of concave functions is concave.
Graphically, a convex (concave) function is below (above) the segment [(x, f(x)) , (y, f(y))].
Convexity guarantees uniqueness of a maximum (provided a maximum ex-

ists). Convexity of a continuous function on a compact domain in Rn guarantees
(a) existence of the maximum and (b) uniqueness of the maximum. This is often
used in maximization problems.

2.9 Quasiconvexity and Quasiconcavity

One problem with concavity and convexity (which we’ll encounter again when
we look at homogeneity) is that they are cardinal properties. That is, whether
or not a function is concave depends on the numbers which the function assigns
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to its level curves, not just to their shape. The problem with this is that a
monotonic transformation of a concave (or convex) function need not be concave
(or convex). For example, f(x) = −x

2

2 is concave, and g(x) = ex is a monotonic

transformation, but g(f(x)) = e−
x2

2 is not concave. This is problematic when
we want to analyze things like utility which we consider to be ordinal concepts.
A weaker condition to describe a function is quasiconvexity (or quasiconcav-

ity). Functions which are quasiconvex maintain this quality under monotonic
transformations; moreover, every monotonic transformation of a concave func-
tion is quasiconcave (although it is not true that every quasiconcave function
can be written as a monotonic transformation of a concave function).

Definition 91 A function f defined on a convex subset U of Rn is quasicon-
cave if for every real number a,

C+a ≡ {x ∈ U : f(x) ≥ a}

is a convex set. Similarly, f is quasiconvex if for every real a,

C−a ≡ {x ∈ U : f(x) ≤ a}

is a convex set.

The following theorem gives some equivalent definitions for quasiconcavity:

Theorem 92 Let f be a function defined on a convex subset U in Rn. Then
the following statements are equivalent:
(a) f is a quasiconcave function on U.
(b) For all x, y ∈ U and all t ∈ [0, 1],

f(x) ≥ f(y) implies f(tx+ (1− t)y) ≥ f(y)

(c) For all x, y ∈ U and all t ∈ [0, 1],

f(tx+ (1− t)y) ≥ min{f(x), f(y)}

Exercise 93 For a function f defined on a convex subset U in Rn, show that
f concave implies f quasiconcave.

The previous exercise shows what we mean when we say that quasiconcavity
is weaker than concavity. Moreover, as noted previously, monotone transforma-
tions of quasiconcave functions remain quasiconcave, allowing us to use them to
represent ordinal concepts such as utility. From our point of view, looking at
optimization, the important point is that a critical point of many quasiconcave
functions will be a maximum, just as is the case with a concave function. But
such critical points need not exist - and even if they do, they are not necessar-
ily maximizers of the function - consider f(x) = x3. Any strictly increasing
function is quasiconcave and quasiconvex (check this); this function is both
over the compact interval [−1, 1], but the critical point x = 0 is clearly neither
a maximum nor a minimum over that interval. What we usually use these
concepts for is to check that upper contour sets (which can represent demand
correspondences, or sets of optimal strategies in game theory, etc.) are convex.
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3 Vectors, Matrices, Matrix Operations

3.1 Vectors

An n-dimensional real vector x = (x1, ..., xn) ∈ Rn is an ordered n-tuple of
real numbers. As a matter of notational convention, whenever we talk of an
n-dimensional vector we mean a column vector; that is, a single column of n
rows:

x = [xi]i=1,...,n =

⎡⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎦
Letting a prime (0) denote the transpose, a row vector is simply the transpose
of a column vector:

x0 = [x1 x2 ... xn]

For the set of all real vectors we may define summation and scalar multi-
plication, as well as inner product, in the ordinary way. Then, the set of all
real vectors x ∈ Rn is a linear vector space, and endowed with the Euclid-
ean distance/norm forms our well known n-dimensional Euclidean vector
space.3

3.2 Matrices

A real matrix is defined as a rectangular array of real numbers.4 In particular,
the matrix

A = [aij ]
j=1,...,n
i=1,...,m =

⎡⎢⎢⎣
a11 a12 ... a1n
a21 a22 ... a2n
... ... ...
am1 am2 ... amn

⎤⎥⎥⎦
for aij ∈ R ∀i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n} and m,n ∈ N∗ = {1, 2, ...}, is a
matrix of dimensions m×n. More compactly we write this matrix as A = [aij ].
Notice that, just as an n-dimensional (real) vector x = (x1, ..., xn) ∈ Rn is

an ordered set or ordered n-tuple of real numbers, an m×n matrix is an ordered
set or ordered n-tuple of m-dimensional vectors. Thus, we may write a matrix
as an array of column vectors

A = [aj ] = [a1 a2 ... an]

with the understanding that aj = (a1j , a2j , ..., amj) ∈ Rm is an m-dimensional
column vector for all j = 1, .., n.

3For more details on vector spaces and Euclidean spaces, see Takayama (1993), ch. 1;
Simon and Blume (1994), chs. 10 & 27; or the MathCamp notes by Peter and Leeat. ♠
ed.note: It is so convinient to transfer responsibility to somebody else! :-)

4 In most of our discussion we restrict focus to matrices over the set of real numbers, R.
All notions, however, can be extended to the complex plane, C, or any arbitrary field. It’s a
good exercise for the reader to check what (if any) would have to change should, throughout
this text, we had set C wherever R appears.
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3.3 Matrix Transpose

The transpose A0 of an m × n matrix A = [aij ] is an n ×m matrix defined
simply as

A0 = [aji] =

⎡⎢⎢⎣
a01
a02
...
a0n

⎤⎥⎥⎦ =
⎡⎢⎢⎣

a11 a21 ... am1
a12 a22 ... am2
... ... ...
a1n a2n ... amn

⎤⎥⎥⎦
3.4 Matrix Addition and Scalar Multiplication

The set of all matrices of the same dimensions forms a vector space. This
requires only that we appropriately define matrix addition and scalar multi-
plication:

Definition 94 Take any m × n matrices A = [aij ], B = [bij ], C = [cij ], and
any real scalars λ, µ. We define matrix addition as

C = A+B ⇔ cij = aij + bij ∀i, j

and scalar multiplication as

C = λA ⇔ cij = λaij ∀i, j

We can then easily show the following properties:

Lemma 95 Matrix addition and scalar multiplication, defined as above, satisfy:

(i)Commutative Law: A+B = B +A
(ii)Associative Law: (A+B) + C = A+ (B + C)
(iii)Distributive Law: (λ+ µ)A = λA+ µA
(iv)Distributive Law: λ(A+B) = λA+ λB
(v)Distributive Law: λ(µA) = (λµ)A

It then follows that:

Proposition 96 The set of all m× n real matrices endowed with matrix addi-
tion and scalar multiplication forms a linear vector space.

Exercise 97 Persuade yourself that you can prove Lemma 95 and Proposition
96 from first principles.

3.5 Matrix Multiplication

Let A and B be matrices. The matrix product of A and B (denoted AB) is
defined when A ism×n and B is n×p. When this holds (i.e., there are as many
columns in A as there are rows in B), we say that A and B are conformable.
The i, kth element of AB is then given by

(AB)ik =
nX
j=1

aijbjk
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and AB is an m× p matrix.

Matrix multiplication satsfies the following properties:

Lemma 98 Provided dimension conformity, matrix multiplication satisfies:

(i)Associative Law: (AB)C = A(BC)
(ii)Associative Law: (λA)B = λ(AB)
(iii)Distributive Law: A(B + C) = AB +AC
(iv)Distributive Law: (A+B)C = AC +BC

Note that if AB exists, BA need not be definted; even if it does exist, it is
not generally true that AB = BA (when this is true, we say that A and B are
commuting). This is why we need both (iii) and (iv) above; the first distributive
law deals with pre-multiplication of a matrix sum by another matrix, while the
second deals with post-multiplication of a matrix sum with another matrix.

3.6 Special Matrices

Definition 99 An m× n matrix A is called square if m = n.
A matrix A is symmetric if A0 = A, or equivalently aij = aji ∀i, j. This

imposes that A is square.
A matrix A is upper triangular if it is square and aij = 0 for j = i+1, ..., n

and i = 1, ..., n− 1. And A is lower triangular iff A0 is upper triangular.
A matrix A is diagonal if it is both upper and lower triangular; equivalently,

iff aij = 0 for i 6= j.
The null matrix (denoted 0) is defined by the relation:

A+ (−1)A = 0, or equivalently, A+ 0 = A

It can thus take any dimension (it must have the same dimension as
A), and is the matrix with all elements equal to zero.
The identity matrix (denoted I) is defined by the relation:

IA = AI = A

It is the diagonal matrix with ones on its diagonal, and takes the di-
mension necessary for conformability (that is, if A above is m× n, I is m×m
in the first part of the above relation and n× n in the second part).

3.7 Transpose Rules

Lemma 100 The following rules hold for matrix transposes:

(A0)0 = A

(A+B)0 = A0 +B0

(AB)0 = B0A0

A0A = 0⇔ A = A0 = 0

A0A 6= AA 6= A0A0 in general, but

A0A = AA = A0A0 for symmetric A
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Note that AB defined ⇒ (AB)0 = B0A0 defined.

Exercise 101 Find examples illustrating the above facts.
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