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3 Systems of Equations

3.1 Linear Systems

A linear system of m equations in n unknowns (or, for brevity, an m×n linear
system) is generally written as:

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2 (1)
...

...
...

am1x1 + am2x2 + ...+ amnxn = bm

where the aij ’s and bi’s (i = 1, ...,m and j = 1, ..., n) are coefficients and con-
stants taken from R and the xj ’s are the unknowns. A solution to (1) is any
n-tuple of real numbers xj ’s that satisfy simultaneously all m equations in (1).
We may write the above system in a more compact format if we let A be an

m× n matrix formed by the coefficients aij ’s, x the n× 1 column vector of the
unknowns xj ’s, and b the m× 1 column vector of constants bi’s:

A =

⎡⎢⎢⎢⎣
a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

am1 am2 ... amn

⎤⎥⎥⎥⎦

x =

⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ b =

⎡⎢⎢⎢⎣
b1
b2
...
bm

⎤⎥⎥⎥⎦
Then we rewrite (1) simply as

Ax = b (2)
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We call this an m× n system, and we call it square iff m = n.
The set of solutions for (2) is simply the set

X∗ ≡ X∗(A, b) ≡ {x ∈ Rn|Ax = b}

In general, for given A and b, X∗ may be empty (no solution), or be a singleton
(unique solution), or have more than one elements (multiple solutions).
Our task is now to identify conditions on the given A and b that give rise to
each case (none, unique, or many solutions).
Remark: We emphasize that, in our context, whenever we talk of a ‘solu-

tion’ we mean a solution in the field of real numbers, not in the field of complex
numbers. But this is not at all a restriction. In fact, as long as A and b are real,
then any complex solution to Ax = b has to be real. Why so? Simply because
if x was nonreal, while A real, then Ax would be nonreal, contradicting Ax = b
and b real.

Example 47 Consider the following three 2× 2 linear systems:

x1 + x2 = 0 (3)

2x1 + 2x2 = 1

or

x1 + x2 = 0 (4)

x1 + 2x2 = 1

or

x1 + x2 = 0 (5)

2x1 + 2x2 = 0

The question we ask is: Why does (3) admit no solution at all, (4) only one
solution, and (5) a continuum of solutions? [Can you verify that claim? Can
you find the set of solutions yourself?]

3.2 Nonlinear Equation Systems

Let fi be a real function with domain Rn, or a subset of it, let bi ∈ R, for
i = 1, ...,m; also let x = (x1, ..., xn) in the intersection of the domains of all fi’s.
Then

fi(x1, ..., xn) = bi or fi(x) = bi

is an equation in x for each i = 1, ...,m. The set of m such equations,

f1(x) = b1

... (6)

fm(x) = bm
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forms a general, possibly nonlinear, system of m equations in n unknowns.
If we let b be the m × 1 column vector of bi’s, and F be the vector-valued

function (with values in Rm) defined by

F (x) ≡

⎡⎢⎣ f1(x1, ..., xn)
...

fm(x1, ..., xn)

⎤⎥⎦
then we can write (6) as

F (x) = b

The set of solutions is then

X∗ ≡ X∗(F, b) ≡ {x ∈ Rn|F (x) = b}

In general X∗ may be empty (no solution), or be a singleton (unique solution),
or have more than one elements (multiple solutions).
Notice that a linear system is just the special case where F is a linear

transformation, meaning F (x) = Ax for some matrix A.

Example 48 (Amemiya 1985) Empirical work often involves estimating a sys-
tem of nonlinenear simultaneous equations. Such a system (with N equations)
is defined by

fit(yt,xt,αi) = uit, i = 1, 2, ...,N, t = 1, 2, ..., T

where yt is an N-vector of endogenous variables, xt is a vector of exogenous
variables, and αi is a Ki-vector of unknown parameters to be estimated. In
the base case it is assumed that the N-vector ut = (u1t, u2t, ..., uNt)

0 is an i.i.d.
vector random variable with zero mean and variance-covariance matrix Σ. Not
all of the elements of vectors yt and xt may actually appear in the arguments
of each fit. We assume that each equation has its own vector of parameters
αi and that there are no constraints among αi’s, but the subsequent results can
easily be modified if each αi can be parametrically expressed as αi(θ), where

the number of elements in θ is less than
NX
i=1

Ki. Strictly speaking, this is not

a complete model by itself because there is no guarantee that a unique solution
for yt exists for every possible value of uit unless some stringent assumptions
are made on the form of fit. Therefore we assume either that fit satisfies such
assumptions or that if there is more than one solution for yt, there is some
additional mechanism by which a unique solution is chosen.

3.3 Solution of Linear System of Equations

We now return to linear systems. Consider the m× n system:

Ax = b
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where A = [aj ] = [aij ] is the m× n matrix of coefficients, x = [xj ] is the n× 1
vector of unknowns, and b = [bi] the m×1 vector of constants; let also aj ∈ Rm
be the j-th column of A, so that A = [a1...an].
What does b = Ax means? Notice that

Ax = x1a1 + x2a2 + ...+ xnan

This is just a linear combination of the columns aj ’s of A, with the xj ’s being
the corresponding weights. Therefore, b = Ax simply means that the given
vector b ∈ Rm can be written as a linear combination of the columns aj ’s of A.
Equivalent, b = Ax means that b falls into the subspace spanned by A.
But recall that b falls into the span of A, and can be written as a linear

combination of the aj ’s, if and only if the matrix formed by stacking b together
with all aj ’s is singular, which also means that its span coincides with that of
A alone.
Thus, letting

S(A) ≡ S[a1, ..., an] ≡
≡

©
y ∈ Rm | y = Ax =

Pn
j=1 xjaj for somex = [xj ] ∈ Rn

ª
be the span of A = [aj ] and

[A, b] =

⎡⎢⎢⎣
a11 ... a1n b1
a21 ... a2n b2
... ... ...
am1 ... amn bm

⎤⎥⎥⎦
be the bordered matrix of coefficients, and by appealing to Theorem 44, we
have:

Lemma 49 The set of solutions to Ax = b is nonempty if and only if b falls
into the span of A; and this holds if and only if the bordered matrix [A, b] is of
the same rank with A, or equivalently spans the same space with A:

X∗(A, b) 6= ∅ ⇔ b ∈ S(A)

⇔ S[A, b] = S(A)

⇔ rank[A, b] = rank(A)

Also, recall that, given an m×n matrix A, the span S(A) and the nullspace
N(A0) of A form an orthogonal partition for the whole Rm. Thus the set of
solutions is empty if and only if the residual of the projection of b on S(A) is
nonzero, or equivalently b is not orthogonal to N(A0).
We now consider two complementary subclasses of linear systems: those that

have b = 0, and those that have b 6= 0. We call the former homogenous and
the latter non-homogeneous.
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3.4 Homogeneous Linear Systems

We here consider linear systems Ax = b with b = 0. Such systems are called
homogeneous.
Recall that Ax = b has a solution (at least one) if and only if b ∈ S(A); here,

if and only if 0 ∈ S(A). Observe then that, since the span S(A) of any matrix
A is a subspace, the zero vector is always an element of the span of S(A). Thus,
if b = 0, the system Ax = 0 always has a solution, whatever the matrix A is.
Indeed, x = 0 is always a solution to Ax = 0 :

b = 0⇒ X∗ 3 0 (7)

Moreover, by definition indeed, for a homogeneous system we have that

b = 0⇒ X∗ = {x|Ax = 0} ≡ N(A)

so that the set of solutions to Ax = 0 is simply the nullspace of the coefficient
matrix A. And since N(A) is a vector space as well, 0 ∈ N(A), which is an
alternative way to say (7).
But in general x = 0 may not be the unique solution. When will x = 0

be the unique solution to Ax = 0? From Theorem 44 we know that Ax = 0
implies that x = 0 necessarily, if and only if all the columns aj of A are linearly
independent. That is, x = 0 is the unique solution to Ax = 0 if and only if
rank(A) = n. In this case, the span of A is the whole space, S(A) = Rn and
rank(A) = dim(Rn), and its nullspace is zero-dimensional, N(A) = {0} and
null(A) = 0.
But we know that rank(A) ≤ min{n,m}, and thus rank(A) = n implies

m ≥ n necessarily. That is, for the solution to be unique we need at least as
many equations as unknowns.
It follows that if there are less equations than unknowns, m < n, then

Ax = 0 must have more than one solutions. With m < n, indeed, the columns
of A are necessarily linearly dependent; in particular, the nullspace of A has
dimension at least 1, and exactly as many as null(A) = n − rank(A) ≥ 1
columns of A can be written as linear combinations of the rest.
In this case, Ax = 0 has a nonzero solution as well. Since Ax = 0 implies

Az = 0 for any z ∈ S(x), and x 6= 0 ⇒ S(x) = R, it follows that Ax = 0 has
indeed a continuum of solutions. More precisely, if we can find as many as k
linearly independent solutions x1, ..., xk to Ax = 0, then any z ∈ S[x1, ..., xk] is
a solution as well:

Exercise 50 Prove the above claim. That is, prove that Ax1 = Ax2 = 0 ⇒
Az = 0∀z ∈ S[x1, x2]

We observe that the maximum number k of independent solutions x1, ..., xk

toAx = 0 is simply (by definition indeed) the dimension of the nullspaceN(A) ≡
{x|Ax = 0} of A; that is k = null(A) = dim(N(A)) of A. Recall then that, for
an m× n matrix A, it is true that null(A) = n− rank(A).
Therefore, there are as many independent solutions to Ax = 0 as k = n −

rank(A). That is:
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Lemma 51 For any homogeneous system Ax = 0,

X∗ = N(A) and dim(X∗) = n− rank(A)

Further, if m > rank(A), then as many as m − rank(A) equations are
redundant, in the sense that they are implied by the rest rank(A) equations.
Thus, any m× n homogeneous system with m > ρ can be reduced to an ρ× n
system, where ρ = rank(A).
Therefore, without any loss of generality, from now on consider only m× n

systems with m = ρ = rank(A) ≤ n. We can then distinguish two cases: either
m = n = rank(A), or m = rank(A) < n. Then m = rank(A) is the ‘effective’
number of equations (that is, the number of linearly independent equations),
while n is the number of unknowns.

• Case I: n = m = rank(A)
In this case we have as many equations as unknowns and A is a nonsingular
n × n matrix. Then, Ax = 0 if and only if x = 0. Hence, x = 0 is the
unique solution to Ax = 0, X∗ = {0}, and dim(X∗) = 0 = n−m.

• Case II: n > m = rank(A)
In this case we have more unknowns than equations and A is a singular
m × n matrix with rank(A) = m < n. Then, Ax = 0 has as many
independent solutions as k = n − rank(A) = n − m. This means that
we may freely choose n − m values for, say, the first n − m unknowns
(x1, ..., xn−m) and then the system Ax = 0 pins down the values for the
rest m unknowns (xn−m+1, ..., xn). And then dim(X∗) = n−m ≥ 1.

So, now let us generalize to arbitrary number of equations and unknowns.
Let A be an m×n matrix for arbitrary m,n and let ρ ≤ min{m,n} be its rank.
Then, partition A and x as follows:

A =

∙
D B

C Ã

¸
x =

∙
z
x̃

¸
(8)

where Ã is a full-rank ρ×ρmatrix, for ρ = rank(A) = rank(Ã), z = (x1, ..., xn−ρ)
is (n−ρ)×1 and x̃ = (xn−ρ+1, ..., xn) is ρ×1. Check the dimensions of B,C,D,
and notice that

Ax =

∙
Dz +B x̃

C z + Ã x̃

¸
so that

Ax = 0⇔
½

Dz +B x̃ = 0

C z + Ã x̃ = 0

¾
As we explained before, the first m − ρ equations are redundant. That is,
Cz + Ãx̃ = 0 implies Dz +Bx̃ = 0 as well. Thus,

Ax = 0⇔ Cz + Ã x̃ = 0
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Since Ãhas full rank, it is invertible, and therefore we get

Ax = 0⇔ x̃ = −Ã−1Cz

This means that any x = (z, x̃) such that x̃ = −Ã−1Cz, for any z ∈ Rn−ρ, is
a solution to Ax = 0. Therefrom it also follows that dim(X∗) = n − ρ. And
conversely, x is a solution to Ax = 0 only if a partition like the above is possible.
Therefore, we can summarize our results so far in the following theorem:

Theorem 52 Consider the m× n homogeneous system Ax = 0. The set of
solutions always includes 0 and thus is nonempty; and is given by the nullspace
of A :

X∗ = N(A) ≡ {x|Ax = 0}
The dimension of X∗ is simply the nullity of A :

dim(X∗) = null(A) = n− rank(A) ≥ 0

Whenever m > rank(A), as many equations as m − rank(A) are redundant.
Further, the solution is unique at x = 0 if and only if A is of full rank,

X∗ = {0}⇔ rank(A) = n

Otherwise, there is a continuum of solutions of the form

X∗ =
n
x ∈ Rn |x = (z,−Ã−1Cz) for some z ∈ Rn−rank(A)

o
with Ã being any square submatrix of A with rank(Ã) = rank(A) and C then
being as in (8).

Exercise 53 Consider the 3× 3 system Ax = 0 for

A =

⎡⎣ 2 1 1
2 1 1
3 1 2

⎤⎦
Show that rank(A) = 2, and partition A appropriately so as to apply what we
did before. What is the set of solutions?

3.5 Non-homogeneous Linear Systems

In the previous subsection we consider linear equation systems with b = 0. Now
consider systems

Ax = b for b 6= 0
We repeat that existence of a solution means that b 6= 0 can be written as a
linear combination of the columns in A, or that b falls into the span of A.
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Consider first the case that m = n = rank(A). Then A is square and has
full rank, so that it is nonsingular and is a basis for the whole Rn. It follows
that b ∈ S(A) necessarily. Moreover, since A is invertible,

Ax = b ⇔ x = A−1b

Thus in this case the set of solutions is singleton, X∗ = {A−1b}. The result
works conversely as well, and even if b = 0. Thus we have

Lemma 54 A square n × n system Ax = b has a unique solution if and only
if A has full rank, which means that A is nonsingular, or equivalently |A| 6= 0.
Then, x = A−1b is the unique solution.

Remark: Notice that, in the above case, A is a basis for Rn, where b belongs.
Hence the geometric interpretation of the solution is that x = A−1b gives the
(unique) coordinates of b with respect to the basis A.
Now suppose that A is not of full rank, but still rank[A, b] = rank(A). This

still implies b ∈ S(A), and at least one solution exists. But now (with b 6= 0)
the solution is not unique. Instead, we have a whole continuum of solutions!
On the other hand, letting [A, b] be the bordered matrix formed as

[A, b] =

⎡⎢⎢⎢⎣
a11 a12 ... a1n b1
a21 a22 ... a2n b2
...

...
...

...
an1 an2 ... ann bn

⎤⎥⎥⎥⎦
we observe that if S[A,B] is strictly bigger than S(A), which is equivalent to
rank[A, b] > rank(A), then it must be the case that b can not be written as
a linear combination of the columns of A; that is, b /∈ S(A) and rather the
projection of b on N(A) is nonzero. Therefore:

Lemma 55 The (nonhomogeneous) system Ax = b has no solution if and only
if the rank of [A, b] exceeds that of A,

X∗ = ∅ ⇔ rank[A, b] > rank(A)

The situation is indeed similar to the homogeneous case. In particular, we
may rewrite Ax = b equivalently as

[A , b ] y = 0

where y =
£
x
−1
¤
= (x1, ..., xn,−1). Notice that [A, b] is m × (n + 1) and y is

(n+ 1)× 1, with y 6= 0 by construction.. This way we have in fact transformed
the non-homogeneous system Ax = b to a homogeneous one, [A, b]y = 0. The
important constraint is only that we require, by construction indeed, that y 6=
0. Thus, for Ax = b to have any solution we need that [A, b]y has a non-
zero solution. But the latter, as we showed before, is possible if and only
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if the bordered matrix [A, b] is singular. If instead [A, b] is nonsingular, and
null[A, b] = 0, then Ax = b has no solution.
Moreover, if null[A, b] = 1, then the set of solutions y of [A, b]y = 0 is a

single-dimensional line, and thus Ax = b has a unique solution. In particular,
the point y of this line that has −1 as its last coordinate gives us the unique
solution to Ax = b. In fact:

Exercise 56 Show that null[A, b] = 1 if and only if rank[A, b] = rank(A).

If null[A, b] ≥ 2, then the set of solutions y of [A, b]y = 0 is a hyperplane of
dimension equal to null[A, b] ≥ 2, and thus the set of solutions x of Ax = b is a
hyperplane with dimension equal to null[A, b]− 1 ≥ 1.

Exercise 57 Persuade yourself that, if [A, b] is singular, then and only then
X∗ 6= ∅, and further dim(X∗) = null[A, b]− 1.

We can thus summarize our results in the following theorem:

Theorem 58 Consider the m × n system Ax = b, with either b 6= 0 or b = 0.
We distinguish the following cases:

• (Unique Solution) If rank[A, b] = rank(A) = n ≤ m, then and only
then the system has a unique solution. In this case, indeed, as many as
m − n equations are redundant, and, provided an appropriate partition,
X∗ = {Ã−1b̃}.

• (No Solution) If rank[A, b] > rank(A), which necessarily implies b 6= 0
and m > rank(A), then and only then the system has no solution, X∗ = ∅.

• (Multiple Solutions) If rank[A, b] = rank(A) but rank(A) < n, then
and only then the system has multiple solutions, and then dim(X∗) =
null[A, b]− 1 = n− rank(A) ≥ 1.

When there is a unique solution, we say that the system is exactly deter-
mined. When there is no, the system in overdetermined. When there are
many solutions, the system is underdetermined (or indeterminate).

Exercise 59 Let m = n, and consider Ax = b. Suppose that |A| = 0, so that
the system is either underdetermined or overdetermined. What of the two cases
arises if b = 0? And what happens if b 6= 0? Next consider m > n = rank(A)
and characterize the appropriate partition that gives X∗ = {Ã−1b̃}.

3.6 Finding the Solution: Cramer’s Rule

We have identified the conditions under which a square system Ax = b has a
unique solution: This is so if and only if A is invertible. Then and only then the
unique solution is given by

x = A−1b
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Calculating this requires that we first calculate the inverse A−1. This can be
done with the algorithm that we presented in Subsection 2.9; the inverse of A
is then given as

A−1 =
1

|A|adjA =

=
1

|A|

⎡⎢⎢⎣
+|A11| −|A21| ... (−1)n+1|An1|
−|A12| +|A22| ... (−1)n+2|An2|
... ... ...
(−1)n+1|A1n| (−1)n+2|A1n| ... +|Ann|

⎤⎥⎥⎦
where Aij is the (n − 1) × (n − 1) matrix formed by erasing the i-th raw and
the j-th column of A, and |Aij | is the (i, j) minor of A.
An alternative way to calculate the solution is to use the Cramer Rule. Let

Bj be the n × n matrix formed by taking A and substituting its j-th column,
aj , with the constants vector, b. For instance, for j = 2,

B2 = [a1 b a3...an] =

⎡⎢⎢⎣
a11 b1 a13 ... a1n
a21 b2 a23 ... a2n
... ... ... ...
an1 bn an3 ... ann

⎤⎥⎥⎦
and so on. Let |A| 6= 0 and |Bj | be the determinants of A and Bj , respectively.
Cramer’s rule then says that the j-th element of the solution x = A−1b is given
by

xj =
|Bj |
|A| ∀j = 1, ..., n

♠ Cramer’s rule is good to know, but if you ever have to invert a numerical
matrix, you’d better turn to Matlab/Mathematica.
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