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4 Span, Basis, and Rank

4.1 Linear Combinations

Fix m and n; take a set of n vectors {aj} = {a1, a2, ..., an}, where aj is a
(column) vector in Rm; take n real numbers {xj} = {x1, ..., xn}; and construct
a vector y in Rm as the sum of the aj ’s weighted by the corresponding xj ’s:

y = x1a1 + x2a2 + ...+ xnan

Then the so-constructed vector y is called a linear combination of the aj ’s.
If we let A = [aj ] be the m× n matrix with columns the vectors aj ’s and x

the n-dimensional vector [xj ], then we can write y as

y = Ax =
nX
j=1

xjaj

Thus, Ax is a linear combination of the columns of A.
Notice that the dimension of the vector y = Ax is the same as of that of any

column aj . That is, y belongs to the same vector space as the aj ’s.

4.2 Linear Dependence/Independence

Consider a set of n vectors in Rm, {aj} = {a1, a2, ..., an}. These vectors are
called linearly dependent if any one of them can be written as a linear com-
bination of the rest. They are otherwise called linearly independent.

Definition 102 Letting A = [aj ], the vectors aj’s are linearly independent
if

Ax = 0⇒ x = 0

They are linearly dependent if

∃x ∈ Rm s.t.x 6= 0 and Ax = 0
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Recall that two vectors x and z are called orthogonal iff z0x = 0. Thus,
Ax = 0 means that x is orthogonal to all the rows of A. Similarly, A0x = 0 (for
x now in Rm since A0 is n×m) means that x is orthogonal to all the columns
aj ’s of A.
Note that the maximum number of linearly independent vectors that we can

have in any given collection of n-dimensional vectors is n. To see this, note that
the equation Ax = 0 can be thought of as a system of n equations (where n is
the dimension of A), with the number of unknowns being equal to the dimension
of x, which is also the number of columns (vectors) in A. But it is a fact that a
homogenous system of equations (i.e., one with zeros on the right-hand side of
every equation) with more unknowns than equations must have infinitely many
solutions, all but one of which are nonzero. On the other hand, we know that
we can write n linearly independent vectors of dimension n - the n-dimensional
identity matrix consists of just such a collection.

4.3 The Span and the Nullspace of a Matrix, and Linear
Projections

Consider an m× n matrix A = [aj ], with aj denoting its typical column. Con-
sider then the set of all possible linear combinations of the aj ’s. This set is
called the span of the aj ’s, or the column span of A.

Definition 103 The (column) span of an m× n matrix A is

S(A) ≡ S[a1, ..., an] ≡
≡

©
y ∈ Rm | y = Ax =

Pn
j=1 xjaj for somex = [xj ] ∈ Rn

ª
On the other hand, we define the nullspace of A as the set of all vectors that

are orthogonal to the rows of A.

Definition 104 The nullspace or Kernel of an m× n matrix A is

N(A) ≡ N [a1, ..., an] ≡
≡ {x ∈ Rn | Ax = 0}

Exercise 105 Given A, show that S(B) ⊆ S(A) and N(A0) ⊆ N(B0) whenever
B = AX for some matrix X. What is the geometric interpretation?

Notice that N(A0) is the set of all vectors that are orthogonal to the aj ’s.
Thus,

z ∈ N(A0)⇔ z ⊥ S(A)

which means that N(A0) is the orthogonal complement subspace of S(A).
That is,5

S(A) +N(A0) = Rm

Indeed:
5Recall that, for any sets X,Y, their sum is defined as X + Y ≡

{ z | z = x+ y, some x ∈ X, y ∈ Y }.
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Exercise 106 Given an m × n matrix A, show that S(A), N(A) and N(A0)
are all linear subspaces. Show further that S(A) and N(A0) are orthogonal
subspaces, in the sense that z ∈ S(A), u ∈ N(A0) ⇒ z0u = 0. Show further
that S(A) +N(A0) = Rm, in the sense that for every y ∈ Rm there are vectors
z ∈ S(A) and u ∈ N(A0) such that y = z + u.

Remark: z is then called the (linear) projection of y on S(A), or the
regression of y on A, and u is called the residual, or the projection off S(A).
Does this reminds you something relevant to econometrics?
The last results are thus summarized in the following:

Lemma 107 S(A) and N(A0) form an orthogonal partition for Rm; that is,

S(A) ⊥ N(A0) and S(A) +N(A0) = Rm

4.4 Basis of a Vector Space

Let X be a vector space. We say that the set of vectors {a1, ..., an} ⊂ X, or the
matrix A = [aj ], spans X iff S(a1, ..., an) = S(A) = X.
If A spans X, it must be the case that any x ∈ X can be written as a

linear combination of the aj ’s. That is, for any x ∈ Rn, there are real numbers
{c1, ..., cn} ⊂ R, or c ∈ Rn, such that

x = c1a1 + ...+ cnan, or x = Ac

There may be only one or many c such that x = Ac. But if for each x ∈ X there
is only a unique c such that x = Ac, then cj is called the j-th coordinate of x
with respect to A. And then A is indeed a basis for X.

Definition 108 A basis for a vector space X is any set of linearly independent
vectors, or a matrix, that spans the whole X.

Example 109 In Rn, the usual basis is given by {e1, ..., en} where ei is a vector
with a unit in the i-th position and zeros elsewhere; alternatively, the n × n
identity matrix

I =

⎡⎢⎢⎢⎣
1 0 ... 0
0 1 ... 0
...
...

...
0 0 ... 1

⎤⎥⎥⎥⎦
is a basis for Rn. If x = (x1, ..., xn) ∈ Rn, then xj are simply the coordinates of
x with respect to I; that is,

x = x1e1 + x2e2 + ...+ xnen = Ix

This means that {e1, ..., en}, or I, spans Rn. And trivially, the ej’s are linearly
independent, because

xI = x, or x1e1 + ...+ xnen =

⎡⎢⎣ x1
...
xn

⎤⎥⎦
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and thus xI = 0⇒ x = 0.

Observe that any space may admit many-many different bases! For instance:

Exercise 110 Show that if {ej} is a basis for X, then so is {fj} = {µej} for
any scalar µ 6= 0.

And a bit less trivial:

Exercise 111 Suppose {ej} is a basis for X; let P = [pij ] be any nonsingular
n × n matrix, and let fj =

P
i pijei. Show then that {fj} is a basis for X as

well.

In other words,

Lemma 112 If E is a basis for X, then so is F = EP for any nonsingular P .

Notice that, with F so-constructed, P is then simply the coordinates of the
basis F with respect to the basis E.

Example 113 For instance, all of the following matrices are bases for R2:∙
1 −1
1 1

¸
,

∙
3 −1
2 5

¸
,

∙
0 1
2 0

¸
,

∙
α β
γ δ

¸
provided αδ − βγ 6= 0.

Exercise 114 Can you figure out what are the coordinates of
£
1
0

¤
and

£
0
1

¤
with

respect to the above alternative bases? What about any x =
£
x1
x2

¤
?

Exercise 115 Characterize the set of all bases for the real line, R. Do the same
for Rn. Persuade yourself that this is the set of all nonsingular n× n matrices.

In the above example for R2, we found many different bases, but they all had
something in common: They were all made of just 2 vectors, and we know well
that 2 is the dimension of R2. But, what is the dimension of a vector space, and
is this unique despite the multiplicity of bases? In answering this the following
helps:

Lemma 116 Let {ej} = {e1, ..., en} be a basis for X, and let {bj} = {b1, ..., bm}
be any set of vectors with m > n. Then {bj} can not be linearly independent.

Exercise 117 Can you prove this? Here is a hint: Write bj =
P

i cijei for
some {cij}. Let C = [cij ] and let x 6= 0 be some solution to Cx = 0. [Which
lemma/proposition ensures that such a solution exists?] Use that to show

X
i

λiei = 0 for λi =

⎛⎝X
j

xjcij

⎞⎠ 6= 0 ∀i

But isn’t that a contradiction, which indeed completes the proof?
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From the last lemma it follows that all bases of a given space will have the
same number of elements. Therefore, we can unambiguously define:

Definition 118 The dimension of a vector space X, dim(X), is the number
of elements in any of its bases. On the other hand, if such a basis with finite
elements does not exist, then the space is infinite dimensional.

Exercise 119 Consider the space of all sequences of real numbers. Is that a
vector space? Can you think of a basis for it? Let ej be a sequence that has unit
in its j’th position and zero in all other positions – e.g., e2 = {0, 1, 0, 0, ...} –
and consider the set {ej |j = 1, 2, ....}. Is that a basis for the space of sequences?
What is its dimension?

4.5 The Rank and the Nullity of a Matrix

The rank of matrix A = [aj ] is defined as the maximum number of independent
columns aj of this matrix. In particular,

Definition 120 The rank of a matrix A is the dimension of its span. The
nullity of A is the dimension of its nullspace. That is,

rank(A) ≡ dim(S(A)) and null(A) ≡ dim(N(A))

A useful result to keep in mind is the following:

Lemma 121 Let any matrix A, and A0 its transpose. Then, the rank of A and
A0 coincide:

rank(A) = rank(A0)

This simply means that a matrix always has as many linearly independent
columns as linearly independent rows. Equivalently, a matrix and its transpose
span subspaces of the same dimension.
But, is there any relation between the rank and the nullity of a matrix?

There is indeed, and this consistitutes the ‘fundamental theorem of linear
algebra’:

Theorem 122 Let any m×n matrix A = [aj ], with n columns aj ∈ Rm. Then,
its rank and its nullity sum up to n:

rank(A) + null(A) = n = #{aj}

Exercise 123 Here is a sketch of the proof [not an easy one]; you have to fill
the details: Let k = null(A) ≡ dim(N(A)). [Check that k ≤ m.] Take a basis
{e1, ..., ek, ek+1, ..., en} of Rn such that {e1, ..., ek} is a basis for N(A). For any
x ∈ Rn, the are λ1, ..., λn ∈ R such that

x = λ1e1 + ...+ λnen
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and
Ax = λk+1Aek+1 + ...+ λnAen

because
{e1, ..., ek} ⊂ N(A)⇒ Ae1 = ... = Aek = 0

Show further that the set {Aek+1, ..., Aen} is linearly independent as well: As-
sume not and get a contradiction that {e1, ..., en} would then be linearly de-
pendent. Conclude that {Aek+1, ..., Aen} forms a basis for S(A). Notice that
{Aek+1, ..., Aen} has n−k elements, and thus rank(A) = dim(S(A)) = n−k =
n− null(A). QED

A related result is the following:

Exercise 124 Using the last theorem and the previous lemma, show that

rank(A) + null(A0) = m

null(A)− null(A0) = n−m

Remark: Recall that S(A) and N(A0) form a partition (an orthogonal
one, indeed) of Rm. It is not thus surprising that dim(S(A)) + dim(N(A0)) =
dim(Rm), or rank(A)+null(A0) = m. From a ‘transpose’ view, S(A0) and N(A)
form a partition of Rn, and thus rank(A0)+null(A) = n, or rank(A)+null(A) =
n, using the fact that rank(A0) = rank(A). Does this provide you with a clear
geometric intuition for the above theorem?

4.6 Nonsingularity and Matrix Inversion

Definition 125 A square matrix A of dimension n × n is nonsingular if
rank(A) = n. Equivalently, A is nonsingular if null(A) = 0.

Lemma 126 If A is nonsingular then there exists a nonsingular matrix A−1

such that
AA−1 = A−1A = I

where I is the identity matrix.
Proof. Recall that if A is nonsingular, then its columns are linearly indepen-
dent. Therefore, the equation Ax = c has a unique solution x. In particular,
Ax = ei has a unique solution, where ei is the n × 1 column vector with a
1 as its ith element and zeroes elsewhere. We can stack n such equations
(Ax1 = e1, Ax2 = e2, ..., Axn = en) to show that AX = I is satisfied by a
unique matrix X; this matrix is a right inverse of A. To show that A has a left
inverse, note that A nonsingular implies that the rows of A are linearly inde-
pendent as well, and so the equation yA = e0i, where e

0
i is the transpose of ei,

has a unique solution x, where y is a row vector. Continuing as before we see
that Y A = I is satisfied by a unique matrix Y , and this is a left inverse of A.
Finally, to show that X = Y (and that both can therefore truly be called A−1),

we will show that if AX = Y A = I, then X = Y . To see this, suppose it’s not
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true; AX = Y A = I but X 6= Y . Then premultiply the left-hand side of the
inequality by Y A and post-multiply the right-hand side by AX (which changes
nothing, since both are equal to the identity matrix) and we have Y AX 6= Y AX,
which is false and establishes the assertion.

The following facts about matrix inverses are useful (assuming invertibility):

Lemma 127 (AB)−1 = B−1A−1

Proof. Observe that if we postmultiply AB by its inverse (AB)−1 we get I by the
definition of matrix inverse, and similarly if we premultiply AB by B−1A−1 we
get I, so we can apply the previous lemma to conclude that (AB)−1 = B−1A−1.

Lemma 128 (A0)−1 = (A−1)0

Proof. We want to show that A0(A−1)0 = (A−1)0A0 = I. But this follows
directly from our transpose rules, taking the transpose on both sides of the
equalities AA−1 = I (which gives (A−1)0A0 = I) and A−1A = I (which gives
A0(A−1)0 = I).

Note that the fact shown in the first of the two proofs above implies that the
left-hand inverse and the right-hand inverse of a matrix are the same, so that
we can talk meaningfully of the inverse of a nonsingular square matrix

4.7 Powers of a Matrix

For any square matrix A we may define its k-th power, denoted by Ak, for
any k ∈ N. Ak is defined inductively by A0 ≡ I and Ak ≡ AAk−1 for k ∈ N∗ =
{1, 2, ...}.
If A is invertible, then we also define A−k ≡ (A−1)k, for any k ∈ N. Actually

it can be shown that A−k = (Ak)−1.(See the exercise below)
Remark: So far we have not defined Ak for a non-integer but real number k.

This will become possible for nonsingular and symmetric, or any diagonalizable
matrices, but we have to defer till the point we discuss matrix eigensystem and
diagonalization..

Exercise 129 Use the properties of transpose and inverse to prove that
1.)A−k = (Ak)−1

2.)Consider the matrix: Z = X(X 0X)−1X 0 where X an arbitrary m × n
matrix. Show that Z is symmetric. Also show that ZZ = Z.

4.8 The Determinant of a Matrix

The determinant, det(A) or |A|, of a matrix A is defined iff A is square.

Definition 130 The determinant of a square matrix A with dimension n × n
is a mapping A→ |A| such that
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i) |·| is linear in each row of A.
ii) if rank(A) < n then |A| = 0 and vice versa
iii) |I| = 1

We can view the matrix A as a collection of n row vectors {a1, a2, ..., an}
where each ai ∈ Rn. The determinant is then a function mapping the set of vec-
tors {a1, a2, ..., an} into R. (We will not prove this here, but this mapping exists
and it is unique, for any square matrix A). We can write D(a1, a2, ..., an)→ R.
Property i) of the previous definition means that

D(a1, a2, ..., λai+µa
0
i, ..., an) = λD(a1, a2, ..., ai, ..., an)+µD(a1, a2, ..., a

0
i, ..., an)

for any scalars λ, µ ∈ R and any vectors ai, a0i ∈ R. In particular note that
D(a1, a2, ..., λai, ..., an) = λD(a1, a2, ..., ai, ..., an).
Alternatively, we can give an inductive definition, providing a computational

algorithm for the determinant:

Definition 131 Let an n× n matrix A = [aij]. If n = 1, and hence A = [a11],
then |A| ≡ a11. For any n > 1, we let

|A| ≡
nX
j=1

(−1)j+1a1j |A1j | = a11|A11|− a12|A12|+ ...± a1n|A1n|

where [a1j ] is the first row of A and A1j is the (n − 1) × (n − 1) submatrix
constructed by erasing the first row and the j-th column of A.

This definition implies for a 2× 2 matrix

A =

∙
a11 a12
a21 a22

¸
that |A| = a11a22 − a12a21.
For a 3× 3 matrix

A =

⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦
the determinant can be computed by the Sarrus Rule, which works as follows:
First border the matrix at its right with its first two columns;⎡⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤⎦ a11 a12
a21 a22
a31 a32

then take the sum of the products of the elements along the parallels of the
principal diagonal minus the sum of the products of the elements along the
parallels to the other diagonal; this gives the determinant of A:

|A| = (a11a22a33 + a12a23a31 + a13a21a32)

−(a31a22a13 + a32a23a11 + a33a21a12)
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Sometime useful in speeding up computation, the following lemma allows us
to work out the determinant along any raw or column:

Lemma 132 For any fixed i = 1, ..., n,

|A| =
nX
j=1

(−1)i+jaij |Aij | = (−1)i+1 (ai1|Ai1|− ai2|Ai2|+ ...± ain|Ain|)

and for any fixed j = 1, ..., n

|A| =
nX
i=1

(−1)i+jaij |Aij | = (−1)j+1 (a1j |A1j |− a2j |A2j |+ ...± anj |Anj |)

where [aij ]j=1,..,n is the i-th raw of A, [aij ]i=1,..,n is the j-th column of A, and
Aij is the (n − 1) × (n − 1) submatrix constructed by erasing the i-th row and
the j-th column of A.

Finally, keep in mind the following:

Lemma 133 1.) |AB| = |A||B|
2.) |A| = |A0|
3.)

¯̄
A−1

¯̄
= 1/|A|

The determinant of a matrix allows an interesting interpretation in terms of
the surface (more generally volume) of the vectors comprising a matrix.

4.9 Matrix Inversion, part II

The ordinary test for invertibility of a matrix is whether its determinant vanishes
or not:

Theorem 134 A matrix A is invertible iff |A| 6= 0

Provided |A| 6= 0, A−1 exists for sure. However, the computation of A−1 is
generally a pain, especially when n > 2. An algorithm to compute the inverse
of a given n× n matrix A = [aij ] works as follows:

• For n = 1, and hence A = [a11], then A−1 =
h
1
a11

i
=
h
1
|A|

i
.

• For n > 1 : Let Aij denote the (n − 1) × (n − 1) submatrix constructed
by erasing the i-th row and the j-th column of A. Let |Aij | be called the
(i, j) first-order minor of A and define the (i, j) cofactor of A as

cij = (−1)i+j |Aij |

Notice by the way that

|A| =
X
i

aijcij =
X
j

aijcij =

=
X
j

(−1)i+jaij |Aij |
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For example,

|A| = a11|A11|− a12|A12|+ ...+ (−1)n+1a1n|A1n|

Construct the n× n matrix C = [cij ] of all first-order cofactors of A and
define the adjoint of A as the transpose of C,

adjA ≡ C 0 = [cji]

Then, the inverse of A is

A−1 =
1

|A|adjA =

=
1

|A|

⎡⎢⎢⎣
+|A11| −|A21| ... (−1)n+1|An1|
−|A12| +|A22| ... (−1)n+2|An2|
... ... ...

(−1)n+1|A1n| (−1)n+2|A1n| ... +|Ann|

⎤⎥⎥⎦
This algorithm works pretty well for manual computation if n = 2 or 3.

Exercise 135 Show that for a 2× 2 matrix

A =

∙
a β
γ δ

¸
provided |A| = αδ − βγ 6= 0, the inverse is

A−1 =
1

αδ − βγ

∙
δ −β
−γ α

¸
But otherwise, thanks to modern technology, computers can be our ‘slaves’

in computing the inverse of a huge matrix. 6

Finally,

Exercise 136 Show that if A is real and invertible, then A−1 is real as well.
What if A is complex but generally non-real? Define the inverse of A appropri-
ately.

4.10 Matrix Inversion and Linear Independence: So far,
so good...

This is probably the most important characterization result to remember. ♠ A
kind of six-in-one shampoo....

6Check out Mathematica, Matlab, Fortran, etc. ♠Up to the 70’s a research assistan-
ship would quite possibly involve manual computation of matrix inverses. In contemporary
academic research, computers have substituted graduate students in this job. Nonetheless,
graduate-student slavery is still prevailing, in other old or new forms!
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Theorem 137 Let A be a n×n square matrix. Then, the following conditions
are equivalent
(i) A is nonsingular; i.e., A−1 exists; ⇔
(ii) A has a non-zero determinant, |A| 6= 0; ⇔
(iii) the columns {aj} of A are linearly independent; i.e., Ax = 0⇒ x = 0; ⇔
(iv)A forms a basis for Rn; ⇔
(v) A spans the whole n-dimensional space, S(A) = Rn; ⇔
(vi) the kernel of A is null, N(A) = {0}.

Further, the following lemma will prove useful when we analyze linear equa-
tions systems:

Lemma 138 Let 1 ≤ m < n and an m × n matrix A = [aij ]. Then there is
x ∈ Rn, x 6= 0 such that Ax = 0. This in turn implies null(A) ≡ dim(N(A)) ≥ 1.

Remark: If we interpret N(A) as the set of solutions to the system Ax =
0 [see next section for details], the above lemma says that, whenever there are
more unknowns than equations (n > m), then the system Ax = 0 is underde-
termined and admits a continuum of solutions.

Exercise 139 Construct an n× n matrix B = [bij ] by bij = aij for i = 1, ...,m
and bij = 0 for i = m + 1, ..., n, ∀j; more compactly, B =

£
A
0

¤
. What is |B|?

What does this imply for Bx? Notice that Bx =
£
Ax
0

¤
. Does this help you prove

the above lemma?

33




