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6 Matrix Diagonalization and Eigensystems

6.1 The Characteristic Equation, Eigenvalues and Eigen-
vectors

In this section we study eigenvalues and eigenvectors of a given matrix A. These
can be used to transform the matrix A into a simpler form which is useful for
solving systems of linear equations and analyzing the properties of the mapping
described by A. We say that λ is an eigenvalue of an n × n matrix A with
corresponding eigenvector v if

Av = λv

for some v 6= 0. Conversely, we say that v 6= 0 satisfying the equation is an
eigenvector corresponding to the eigenvalue λ.
Note that we can rewrite the above equation as (A − λI)v = 0. This

homogenous system of equations has a nontrivial solution if and only if the
matrix A− λI is singular, which in turn holds iff |A− λI| = 0. This leads to
a characterization of the eigenvalues as solutions to the equation |A− λI| = 0.
Note that |A− λI| is a polynomial of degree n in λ (why?). It thus has at most
n, possibly complex, roots, and at least one.
For square matrices we define

Definition 153 Let A be any n × n matrix and I the n × n identity matrix.
The characteristic polynomial of A is ξ(λ) ≡ |A − λI|. Its characteristic
equation is ξ(λ) = 0, and the solutions to it are called characteristic roots,
or eigenvalues. Any vector v 6= 0 that satisfies Av = λv for some λ is a
characteristic vector, or eigenvector.

Exercise 154 Let a 2× 2 matrix

A =

∙
α β
γ δ

¸
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Show that then ξ(λ) ≡ |A − λI| = λ2 − (α + δ)λ + (αδ − βγ), and find the
eigenvalues.

Exercise 155 By using the inductive definition of the determinant show, or at
least persuade yourself, that if A is n× n then ξ(λ) ≡ |A− λI| is an n-th order
polynomial.

By the fundamental theorem of algebra, any n-th order polynomial has ex-
actly n roots. Of course, some of these roots may be imaginary rather than real,
or they might be repeated. In any case, there are (complex or real) numbers
{λ1, ..., λn} such that

ξ(λ) ≡ |A− λI| = (λ− λ1)....(λ− λn)

These {λ1, ..., λn} are the eigenvalues of A.
Remark: We emphasize that, in what follows, we do not assume the eigen-

values or the eigenvectors to be real. A real matrix A may well have nonreal
eigenvalues and nonreal eigenvectors.
Nor do we assume that all roots are distinct. If a root appears once, then

it is called a distinct root, while if it is repeated r > 1 times, then it is called
a r-fold root. For example, the only eigenvalue of the identity matrix is 1,
appearing with multiplicity n; i.e., it is an n-fold root. Moreover, in this
example the eigenvectors are not unique, either. Indeed, all nonzero vectors
v ∈ Rn are eigenvectors of the identity matrix associated to eigenvalue 1.
Returning to the eigenvectors of A, we observe that the singularity [since

ξ(λj) ≡ |A − λjI| = 0] of matrix (A − λjI), implies that there exists a vector
vj 6= 0 such that (A− λjI)vj = 0. Rearranging we get Avj = λjvj . Thus:

Lemma 156 To any eigenvalue of A, λj such that. |A − λjI| = 0, there is
associated at least one eigenvector vj 6= 0 such that Avj = λjvj.

We showed that each eigenvalue has at least one eigenvector associated with
it. In fact, it has a whole continuum of associated eigenvectors: Indeed, take
vj 6= 0 such that Avj = λjvj and let wj = µvj for any scalar µ 6= 0. Then
wj 6= 0 and

Avj = λjvj ⇒ A(µvj) = λj(µvj)⇒ Awj = λjwj

meaning that wj is as well an eigenvector associated with eigenvalue λj . Given
this intrinsic multiplicity, we define

Definition 157 Let an n×n matrix A and let {λ1, ..., λn} its eigenvalues. For
each λj we define the corresponding characteristic manifold or eigenspace
Mj as the subspace of all eigenvectors associated with λj:7

Mj ≡ {x ∈ Rn|Ax = λjx}
7Plus the zero vector.
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Exercise 158 Show that

v,w ∈Mj ⇒ αv + βw ∈Mj ∀α, β ∈ R

which means that Mj is indeed a vector (sub)space. Show also that it has
dim(Mj) ≥ 1, and notice that Mj is unique for each λj.

A more interesting observation is the following:

Theorem 159 Suppose k (k ≤ n) eigenvalues {λ1, ..., λk} of A are distinct, and
take any corresponding eigenvectors {v1, ..., vk}, defined by vj 6= 0, Avj = λjvj
for j = 1, ..., k. Then, {v1, ..., vk} are linearly independent.
Proof. First consider two such eigenvectors. Suppose we have eigenvalue λ
with eigenvector v, and eigenvalue µ with eigenvector w, λ 6= µ. We will show
that αv+βw = 0⇒ α = β = 0, implying that v and w are linearly independent.
So suppose we have

αv + βw = 0 (1)

αAv + βAw = 0 (2)

αλv + βµw = 0 (3)

Now multiply (1) by −λ and add to (3) to get

β(µ− λ)w = 0 (4)

which implies that β = 0, and plugging this back into (1) implies that α = 0
as well.
Now consider any three eigenvectors (v, w and u) with distinct eigenvalues

(λ, µ and ν); we proceed in much the same manner:

αv + βw + γu = 0 (5)

αAv + βAw + γAu = 0 (6)

αλv + βµw + γνu = 0 (7)

β(µ− λ)w + γ(ν − λ)u = 0 (8)

But this is a linear combination of two eigenvectors, and we have just shown
that they must be linearly independent. So we have β = γ = 0, which implies
that α = 0 as well. We can continue in this manner to show that any k
eigenvectors with distinct eigenvalues are linearly independent.

Corollary 160 Hence,

rank(V ) ≥ k = rank(v1, ..., vk)

where V = [v1 ... vn] is a n× n matrix of eigenvectors for all eigenvalues, and

dim
³Pk

j=1Mj

´
≥ k

where Mj is the characteristic manifold corresponding to λj.
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Observe that

kX
j=1

Mj ≡
n
x ∈ Rn |x =

Pk
j=1 xj , xj ∈Mj

o
= Span(V )

is simply the subspace of Rn that is spanned by all the eigenvectors of A.
From this the geometric interpretation of the condition dim

³Pk
j=1Mj

´
≥ k

should be clear: It simply means that, if A has k distinct eigenvalues, then its
eigenvectors span at least (emphasis: at least) k of the n dimensions of Rn.

Example 161 Consider the matrix:

A =

∙
2 −1
−3 0

¸
Its characteristic polynomial is

|A− λI| = λ2 − 2λ− 3 = (λ+ 1)(λ− 3)

Hence, its eigenvalues are λ1 = −1 and λ2 = 3. To find the eigenvectors we
have to solve Av1 = λ1v1 for v1 and Av2 = λ2v2 for v2. Let’s find first an
eigenvector v1 =

£
v11
v21

¤
corresponding to λ1 = −1:

(A− λ1I)v1 = 0⇔∙
3 −1
−3 1

¸ ∙
v11
v21

¸
=

µ
0
0

¶
⇔

3v11 − v21 = 0

Thus, any v1 =
£
v11
v21

¤
such that. 3v11 = v21 6= 0 is an eigenvector for λ1 = −1,

and vice versa, any eigenvector corresponding to λ1 is of the form v1 =
£
v11
v21

¤
such that 3v11 = v21 6= 0. Now consider the eigenvector v2 =

£
v12
v22

¤
corresponding

to λ2 = 3:

(A− λ2I)v2 = 0⇔
v12 + v22 = 0

Hence, the eigenvectors corresponding to λ2 = 3 are of the form v2 =
£
v12
v22

¤
such

that. v12 = −v22 6= 0. Finally, the manifolds spanned by these eigenvectors are:

M1 =
©
x ∈ R2 |x = (α, 3α) for some α ∈ R

ª
M2 =

©
x ∈ R2 |x = (α,−α) for some α ∈ R

ª
As obvious, dim(M1) = dim(M2) = 1, and further M1 ∩M2 = {0},M1 +M1 =
R2, implying that {M1,M2} is a subspace partition for R2.

For symmetric matrices we can say something stronger. Here we discuss
the eigenvectors of distinct eigenvalues; a more general theorem follows below.
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Theorem 162 Suppose k (k ≤ n) eigenvalues {λ1, ..., λk} of A are distinct
with A symmetric, and take any corresponding eigenvectors {v1, ..., vk}, defined
by vj 6= 0, Avj = λjvj for j = 1, ..., k. Then, {v1, ..., vk} are orthogonal.
Proof. Suppose v is an eigenvector for λ and w is an eigenvector for µ. Then

w0Av = λw0v

and
w0Av = µw0v

(where the second equation is derived by taking the transpose of Aw = µw
and postmultiplying by v). Thus,

0 = (λ− µ)w0v

implying that w0v = 0, or that w and v are orthogonal.

Remark: Finally, we notice that the computation of eigenvalues for diag-
onal or triangular matrices is trivial: These are given simply by the diagonal
elements.

Lemma 163 Let A be an n × n diagonal or triangular matrix with diagonal
elements {ajj }̇. Then its eigenvalues are λj = ajj, all j = 1, ..., n.

Exercise 164 Here is how to work out the proof: Take an upper triangular
matrix A, and form the matrix C = λI − A. Notice that C = λI − A is upper
triangular as well. Compute the determinant ξ(λ) ≡ |λI −A| = |C| inductively
starting from the first row and going down: Show thereby that

|C| = c11|C11|− c12|C12|+ ...± c1n|C1n| =
= (λ− a11)|C11|+ 0 =
= ... =

= (λ− a11)...(λ− ann)

to conclude the proof.

Lemma 165 If A is idempotent (defined by AA = A) then the eigenvalues of
A are 0 or 1.
Proof. Ax = λx ⇒ Ax = AAx = λAx = λ2x, so λ2 = λ which implies λ = 0
or λ = 1.

6.2 Diagonalization and Canonical Form of a Matrix

Definition 166 A matrix A is diagonalizable iff there exist an invertible ma-
trix V such that Λ ≡ V −1AV is diagonal. And then Λ is the canonical form
of A.
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It’s a trivial exercise to show that:

Λ = V −1AV ⇒ A = V ΛV −1 ⇒
⇒ A− λI = V ΛV −1 − λV V −1 = V (Λ− λI)V −1 ⇒
⇒ |A− λI| = |V | |Λ− λI| |V −1| = |Λ− λI|

which means that:

Lemma 167 If A is diagonalizable and Λ is its canonical, then A and Λ share
the same characteristic polynomial and hence the same characteristic roots. And
since Λ is diagonal, its eigenvalues are simply its diagonal elements. Thus, the
canonical Λ of any matrix A, should it exists, is simply given by the eigenvalues
{λj} of matrix A.

A natural question to make, Are all matrices diagonalizable? Unfortunately
not all matrices are diagonalizable, but most8 are.
Consider an n × n matrix A, and let {λ1, ..., λn} be its eigenvalues and

{v1, ..., vn} the corresponding eigenvectors. By definition then,

Avj = λjvj ∀j = 1, ..., n (9)

or in matrix form

[Av1 Av2 ... Avn ] = [λ1v1 λ2v2 ... λnvn ] (10)

[Notice that both Avj and λjvj are n× 1 column vectors and hence the above
matrices are n× n.] Now form an n× n matrix V by stacking the eigenvectors
vj as columns,

V = [v1 v2 ... vn] =

⎡⎢⎢⎣
v11 v12 ... v1n
v21 v22 ... v2n
... ... ...
vn1 vn2 ... vnn

⎤⎥⎥⎦
and a diagonal n × n matrix Λ with the eigenvalue λj as its (j, j) diagonal
element,

Λ =

⎡⎢⎢⎣
λ1 0 ... 0
0 λ2 ... 0
... ... ...
0 0 ... λn

⎤⎥⎥⎦
We can then rewrite (9) or (10) as follows:

AV = V Λ (11)

8More precisely, given the set of all n × n matrices, the (sub)set of non-diagonalizable
matrices is nonempty, but it is of measure zero. Indeed, if a matrix is nondiagonalizable, an
arbitrarily small ‘perturbartion’ in its elements can make it diagonalizable, simply by making
all its eigenvalues distinct.
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So far we haven’t assumed anything about the eigenvalues or the eigenvectors
of A. It is always possible, given any A, to find a matrix V such that AV = V Λ.
But the situation gets more interesting if V is invertible.
So, suppose now that A admits n linearly independent eigenvectors. This

means that V is nonsingular and thus invertible. Thus, pre-multiplying both
sides of (11) with V −1, we get:

V −1AV = Λ (12)

or equivalently:
A = V ΛV −1 (13)

The proposition works also in the other direction: Suppose that given a
matrix A you can find an invertible matrix V and a diagonal matrix Λ such
that (12) holds. Then any diagonal element of Λ is an eigenvalue for A, and the
corresponding column of V is an eigenvector for that eigenvalue.
More precisely the following is true:

Theorem 168 Let A be n × n. If A has as many as n linearly independent
eigenvectors, which means

rank(V ) = dim

⎛⎝ kX
j=1

Mj

⎞⎠ = n

Span(V ) =
kX

j=1

Mj = Rn

then and only then A is diagonalizable.

Remark: The above result holds independently of whether the n eigenvalues
are distinct or not.
We emphasize that for a matrix to be diagonalizable it is both necessary

and sufficient that it admits n linearly independent eigenvectors. On the other
hand, it is not necessary that it has n distinct eigenvalues. For instance, the
n × n identity matrix I is trivially diagonalizable (for it is diagonal itself) but
it has a single eigenvalue, the unit.
However, that A has n distinct eigenvalues is a sufficient condition for A to

be diagonalizable:

Corollary 169 Let A be n× n. If A has n distinct eigenvalues, then it admits
n linearly independent eigenvectors, and thus it is diagonalizable.

Notice the geometric interpretation of
Pk

j=1Mj = Rn : The eigenvectors
{v1, ..., vk} of A (for vj ∈Mj) span the whole space Rn, and {M1, ...,Mk} forms
a partition of the whole Rn.
Notice also that invertibility of a matrix A does not imply diagonalizability,

as the following counterexample shows:
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A =

∙
4 1
−1 2

¸
is invertible. However, it has one eigenvalue (3) with mul-

tiplicity 2, and when we subtract 3 from each of its diagonal elements we find
that ∙

1 1
−1 −1

¸ ∙
v1
v2

¸
= 0

is satisfied only when v1 = −v2. That is, all eigenvectors are multiples of∙
1
−1

¸
. There are not, then, 2 linearly independent eigenvectors for this matrix,

and so this is an invertible matrix which is not diagonalizable.
But we can say something like the converse: if a matrix is diagonalizable,

and if none of its eigenvalues are zero, then it is invertible. For in this case, we
can invert Λ, and so we can write A−1 = V −1Λ−1V (check that this is indeed
the inverse of A = V −1ΛV ).

6.3 Symmetric Matrices

Observe also that the last theorem provides us with a sufficient and necessary
condition, while the last lemma with only a sufficient condition. It is possible
that a n×n matrix has n linearly independent vectors and is thus diagonalizable
even when it does not have n distinct eigenvalues. To get a striking example of
this, consider the n× n identity matrix I; notice that I has a single eigenvalue,
the unit; yet, all x ∈ Rn (x 6= 0) are eigenvectors, simply because Ix = 1x, andP

jMj ≡ {x ∈ Rn|Ix = 1x} = Rn.
More generally we have:

Lemma 170 Let A be a symmetric n× n matrix. Then
(i) All the eigenvalues and all the eigenvectors of A are real;
(ii) A admits n linearly independent eigenvectors and thus it is diagonalizable;
and
(iii) we can indeed find n eigenvectors vj such that v0jvj = 1 and v0ivj = 0

∀i 6= j. This means that V = [vj ] is orthonormal, so that V −1 = V 0 and A is
diagonalizable as

V 0AV = Λ

That is, the so-constructed eigenvector matrix V is an orthonormal basis for Rn
and the eigenspaces {Mj |j = 1, ..., k} form an orthogonal partition of Rn.
Proof. We will prove only part (iii), and thus (ii). Note that we have already
shown these to be true for distinct eigenvalues, so our main concern here is
repeated eigenvalues. Part (i) requires some complex analysis; if you are inter-
ested, look up Hermetian matrices in a linear algebra text (or google it) (question
for future students - does that sound dated, or has the Google empire only ex-
panded with time?); Hermetian matrices are the complex analog to symmetric
matrices in the real field.
(Step 1): Consider first a 2×2 symmetric matrix, and take as given that both

its eigenvalues are real. Take any eigenvector v corresponding to the eigenvalue
λ, so that Av = λv. We may assume without loss of generality that |v| = 1
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(this is merely a normalization). We claim that any w such that w0v = 0, and
with |w| = 1 (again without loss of generality), is also an eigenvector. To see
this, note that if A is symmetric, then (Aw)0v = w0Av = w0λv = λw0v = 0; that
is, Aw is orthogonal to v. In R2, this means that Aw and w must point in the
same direction, i.e. Aw = µw for some µ. But this means that w is indeed an
eigenvector, with eigenvalue µ.
(Step 2): We will now set up an argument which applies to any linear

transformation mapping a two-dimensional vector space onto itself, L :W →W ,
such that (Lx)0y = x0(Ly). Note that a symmetric matrix satisfies this property.
Suppose we choose an arbitrary orthonormal basis {e1, e2} for W . Now,

since L maps W onto itself, we know that Lx ∈ S(W ) for any x ∈ W ; in
particular, it can be written as a linear combination of e1 and e2, since these
are a basis. So write

Le1 = b11e1 + b21e2, Le2 = b12e1 + b22e2

where b11, b12, b21, b22 are scalars. We can collect this system as follows:

£
e1 e2

¤ ∙b11 b12
b21 b22

¸
=
£
Le1 Le2

¤
(Check the dimensions on this equation to make sure you understand why

everything is conformable - note that for now we are speaking of e1 and e2 as
arbitrary elements of W , and L as a linear transformation, but everything still
works if we make e1 and e2 vectors and L a matrix, as we will below). What
we have done here is written a 2 × 2 matrix, [bij ] ≡ B, to represent the linear
transformation L. Now, because {e1, e2} are orthonormal, and (Lx)0y = x0(Ly)
for x, y ∈W, it is clear that b21 = e02Le1 = (Le2)

0e1 = b12, so B is a symmetric
2× 2 matrix.
(Step 3): Now we put the first two steps together. Consider a symmetric

3×3 matrix A with arbitrary (real) eigenvalues, possibly repeated. Suppose one
eigenvalue/eigenvector pair satisfies Av = λv, with |v| = 1. It is clear that v
spans a one-dimensional subspace of R3; moreover, the nullspace of v spans a
two-dimensional subspace N(v) = {x ∈ R3 : x0v = 0}. And with A symmetric,
A maps N(v) onto itself: x ∈ N(v) ⇒ (Ax)0v = x0Av = x0λv = λx0v = 0 ⇒
Ax ∈ N(v). So A shares the qualities of the linear transformation L from Step
2. We will proceed as we did there, with our goal being to construct two more
eigenvectors for A, both of which belong to N(v) and which are also orthogonal
to each other.
Choose an arbitrary orthonormal basis for N(v) - this consists of two 3× 1

vectors which we will again call {e1, e2} ≡ E. We can once again choose scalars
b11, b12, b21, and b22 such that£

e1 e2
¤ ∙b11 b12

b21 b22

¸
=

£
Ae1 Ae2

¤
E

(3×2)
B

(2×2)
= A

(3×3)
E

(3×2)
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In Step 1 we showed that any 2× 2 symmetric real matrix admits a pair of
orthonormal eigenvectors. So let Bwb = µwb and Bub = νub, where wb and
ub are orthonormal two-dimensional vectors and µ and ν are eigenvalues of B
(not necessarily distinct). Note that Ewb = w and Eub = u are 3 × 1 linear
combinations of the columns of E, i.e. w, u ∈ N(v). Then we have

Aw = AEwb = EBwb = Eµwb = µEwb = µw

Au = AEub = EBub = Eνub = νEub = νu

So w and u are eigenvectors of A, with eigenvalues µ and ν, respectively.
Moreover,

w0u = (Ewb)
0Eub = w0bE

0Eub = w0bI2ub = w0bub = 0

w0w = (Ewb)
0Ewb = w0bE

0Ewb = w0bI2wb = w0bwb = 1

u0u = (Eub)
0Eub = u0bE

0Eub = u0bI2ub = u0bub = 1

so w and u are orthonormal. Since they are also orthonormal to the original
eigenvector v, we have found an orthonomal set of eigenvectors for A; linear
independence follows immediately.
The proof for general matrices A now follows by induction; we can continue

following the above steps to show that any n×n symmetric matrix admits a set
of n orthonormal eigenvectors.

So if A is symmetric, then, not only its eigenvectors span the whole space
(that even when A is not itself a basis!), but we can also find a set of orthogonal
eigenvectors, and thus the manifolds {Mj} are orthogonal to each other.

Exercise 171 Consider the 2 × 2 identity matrix. What are its eigenvalues?
Find a V = [v1 v2] such that V 0V = I and V −1IV = I. What are the corre-
sponding {M1,M2}? Consider now

A =

⎡⎣ 1 0 0
0 2 3
0 3 1

⎤⎦
Find an orthonormal V and a diagonal Λ such that V 0AV = Λ.

6.4 Diagonalization as Changing Bases

Suppose we are given a linear transformation of the form

x 7→ y = Ax

Now suppose that A is diagonalizable, and let V,Λ such that V −1AV = Λ.
Equivalently,

A = V ΛV −1

implying
x 7→ y = Ax = V ΛV −1x
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Now let us pre-multiply both sides of y = V ΛV −1x with V −1 to get

V −1y = ΛV −1x

Defining ỹ = (ỹ1, ..., ỹn) = V −1y and x̃ = (x̃1, ..., x̃n) = V −1x, we get

ỹ = Λx̃

or equivalently
ỹi = λix̃i ∀i = 1, ..., n

Since V −1 is invertible, the transformations

x 7→ x̃ = V −1x and y 7→ ỹ = V −1y

are one-to-one, and thus the transformation

x 7→ y = Ax

is equivalent to the transformation

x̃ 7→ ỹ = Λx̃

or just to the system of simple transformations

x̃i 7→ ỹi = λix̃i ∀i = 1, ..., n

All that we did, in fact, is to change bases in Rn. The initial basis was the
customary one, the identity matrix I, and then x and y were the coordinates of
two arbitrary vector elements with respect to the basis I. Now the new basis is
V, and the new coordinates are x̃ and ỹ. Indeed, notice that

x = V x̃ and y = V ỹ

which precisely means that x̃ and ỹ are the coordinates of x and y, respectively,
with respect to the basis V . This should make clear the relevance of our discus-
sion of how to change coordinates when we change bases. Recall that there we
were considering two arbitrary bases E and F, and showed that the projection
of E on F, or the matrix P = F−1E, serves to transform the coordinates from
E to F. In the present context, the initial basis is E = I and the new basis is
F = V, the matrix of n linearly independent eigenvectors, so that the change of
coordinates is given by x 7→ Px for P = F−1E = V −1.
Finally, regarding the mapping x 7→ y = Ax, observe the nice thing about the

diagonalization of A and the corresponding change of bases: In the initial basis
each value yi depends on all (x1, ..., xn), but in the new basis each ỹi depends
only on the corresponding x̃i alone! The multidimensional transformation x 7→
y = Ax is equivalent to the single-dimensional transformations x̃i 7→ ỹi =
λix̃i ∀i = 1, ..., n, but the latter are much easier to work with.
The gains from this change of bases will indeed become clear when we apply

the tools we developed here to solving dynamic systems, as well as in charac-
terizing quadratic forms.
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