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6 Calculus: Some Preliminaries
Before we can begin our study of functions and calculus (with the ultimate goal
being the study of optimization), we must bring in a few concepts from real
analysis. For the moment we will state most of them without proof, just so
we can use them as tools for understanding calculus; later in the course we will
focus on proving these and other statements. I should also note that some of
what you will see here is less general than what you would find in a math course
not specifically geared towards economists - but I will try to note when this is
the case.

6.1 Sequences and Limits

The concept of a sequence is very intuitive - just an infinite ordered array of
real numbers (or, more generally, points in Rn) - but is defined in a way that
(at least to me) conceals this intuition.
One point to make here is that a sequence in mathematics is something infi-

nite. In our everyday language, instead, we sometimes use the word ”sequence”
to describe something finite (like ”sequence of events”, for example).

Definition 106 A (finite) number A is called the limit of sequence {an} if
∀ε > 0 ∃N : ∀n > N |an −A| < ε. If such number A exists, the sequence is
said to be convergent.

Verbally, A is the limit of {an} if the sequence comes closer and closer to A
as N grows and, moreover, stays close to A ”forever”. Of course, such A does
not have to exist, as the following simple example shows:

Example 107 Let an = (−1)n. Then {an} does not have any limit.

That is, a sequence does not have to converge to any single point (for exam-
ple, it can oscillate between two different points). However, what it surely can
never do is to converge to two distinct points at a time:
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Lemma 108 A sequence can have at most one limit.

Definition 109 Sequence {an} is said to converge to ∞ (with no sign) if ∀C
∃N : ∀n > N |an| > C.

To be convergent is a strong condition on {an}; to have a limit point is a
weaker condition. The price you have to pay for relaxing this (or any) condition
is that now more points will fit - for example, a sequence can have only one
limit (which adds some desired definitiveness to the concept) but multiple limit
points. What you hope to get in return is that more sequences have limit points
than have limits7 . To make an exact statement we need one more

Definition 110 Sequence {an} is called bounded if ∃C : ∀n |an| < C

6.2 Metrics and Norms

Whenever we are talking about a set of objects in mathematics, it is very com-
mon that we have a feeling about whether two particular objects are ”close” to
each other. What we mean is usually that the distance between them is small.
Although it may be intuitive what the distance between two points is, it is not
always that intuitive in a more general setup: for instance, how would you think
about the distance between two continuous functions on the unit interval? Be-
tween two optimal control problems? Between two economies? Between two
preference relations? Here is how we formalize what a distance means:

Definition 111 A metric on Rnis a function d : Rn × Rn → R such that
∀x, y, z ∈ Rn:

• d(x, y) ≥ 0 (we do not want negative distance),

• d(x, y) = 0 ⇐⇒ x = y (moreover, we want strictly positive distance be-
tween distinct points),

• d(x, y) = d(y, x) (symmetry),

• d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Example 112 d1(x, y) = |x1 − y1|+ ...+ |xn − yn|

Example 113 d2(x, y) =
p
(x1 − y1)2 + ...+ (xn − yn)2 (this is called Euclid-

ean distance - and that is the default in Rn)
7A similar tradeoff arises in game theory: we can use strictly dominant strategies or Nash

equilibrium as a solution concept; the former is more definite and probably more appealing,
but need not (and in most interesting cases does not) exist; the latter always exists (for finite
games at least) but need not be unique and deserves further justification. Now that, after a
number of years in economics, I have finally learned the fundamental concept of tradeoff, I
am amazed to see in how many instances it is applicable in math.
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6.3 Open and Closed Sets

For the rest of the analysis we stick to the Euclidean metric on Rn : d(x, y) =
d2(x, y).

Definition 114 For any x0 ∈ Rn and r > 0 define an open ball Br(x0) = {x ∈
Rn|d(x, x0) < r}.

Exercise 115 What do open balls in R2 and R3 look like? What would they
look like if we fixed another metric (d1 or d∞) instead of d2?

Definition 116 Set A ⊂ Rn is called open if, together with any point x0 ∈ A,
it contains a small enough open ball Bε(x0) for some ε > 0.

Example 117 An open ball is an open set (why?)

Example 118 The half-space {x ∈ Rn : x1 > 0} is open

Definition 119 A set is called closed if its complement is open.

Example 120 A closed ball Br(x0) = {x ∈ Rn|d(x, x0) ≤ r} is a closed set.

Exercise 121 Show that empty set ∅ and the entire space Rn are both open and
closed. Persuade yourself that these two are the only sets which are both open
and closed.

Definition 122 A set in Rn is called compact if it is closed and bounded.

This is not the traditional definition of compactness that you will find in a
textbook — in spaces more general than Rn it will not work (that is, in those
spaces there exist closed and bounded sets which will not be compact). However,
in Rn it will work fine: whatever definition of compactness you will ever see, it
will be equivalent to the one above.
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