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7 Eigensystems: Applications

7.1 Linear Transformations

Given an n × m matrix A, consider the mapping T : Rm → Rn defined by
T (x) = Ax for all x ∈ Rm. It is easy to check that this mapping is linear in the
following sense:

Definition 172 A mapping A of a vector space X into a vector space Y is
called a linear transformation if

A(x1 + x2) = Ax1 +Ax2 and A(cx) = cAx

for all x, x1, x2 ∈ X and all scalars c.

Obviously, any matrix A induces a linear transformation. A fundamental
result establishes a kind of converse, that any linear transformation can be
uniquely represented by a matrix. Thus, we may think of matrices and linear
transformations interchangeably. More precisely:

Theorem 173 Given two vector spaces X and Y and any fixed bases E =
(e1, ..., en) for X and F = (f1, ..., fm) for Y, there is a one-to-one correspon-
dence between any linear transformation T : X→ Y and a matrix A = A(E,F ).
For given T, n × n E, m ×mF , the corresponding A = [aij ] is m × n and is
given by projecting the image of E under T on F :

A = F−1T (E)

We may then let
T (x) = Ax ∀x ∈ X
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In more detail: For any j = 1, ..., n, take ej from X and form its image under
T . T (ej) is a vector in Y. Since F is a basis for Y, it must be the case that
T (ej) can be written as a linear combination of the fj ’s; that is,

T (ej) = a1jf1 + ...+ amjfm = Faj ⇒
aj = F−1T (ej)

This means that aj , the j-th column of A, consists simply of the coordinates of
T (ej) on the basis F . More compactly,

T (E) = FA ⇒
A = F−1T (E)

With A constructed so, take any x ∈ X. Let the n-vector c be the coordinates
of x on basis E; that is, c = [cj ] is such that

x = Ec = c1e1 + ...+ cnen

But then
T (x) = T (Ec) = T (c1e1 + ...+ cnen)

and since T is a linear transformation

T (x) = c1T (e1) + ...+ cnT (en) = T (E)c

Of course, T (x) = T (E)c is a vector in Y. Now using T (E) = FA, we get

T (x) = FAc ∀x ∈ X

This means that Ac are the coordinates of T (x) on the basis F . Thus, x is
mapped to T (x), but, for given E,F , x is equivalent to some c, and then T (x)
is equivalent to Ac. Thus x 7→ T (x) is equivalent to c 7→ Ac. In this sense
T is equivalent to A, and we may simply write T (x) = Ax, for x meant in
E-coordinates and T (x) in F -coordinates.

Exercise 174 Show that the one-to-one correspondence between linear trans-
formations T and matrices A preserves addition, scalar multiplication, and the
zero element.

Further, there is an immediate correspondence between inversion of linear
transformations and matrix inversion:

Definition 175 Given X and Y, the mapping T : X→ Y is invertible iff there
is a mapping T−1 : Y→ X such that, for all x ∈ X,

T−1(T (x)) = x

Proposition 176 Given X with basis E, Y with basis F, and T : X → Y, let
A = F−1T (E) be the equivalent matrix for T . Then, T is invertible if and only
if A is invertible. If so, the inverse T−1 : Y→ X is given by

T−1(y) = A−1y ∀y ∈ Y
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Remark: Observe that the last result implies that, for T : X → Y to be
invertible, its equivalent matrix A has to be square. (Or otherwise what would
A−1 be?) Thus, X and Y have to share the same dimension. Without loss of
generality, we may let X = Y.
Indeed, the identity matrix corresponds to the identity function

Definition 177 We define the identity linear transformation by I : X → X by
I(x) = x∀x ∈ X.

Then, letting ◦ denote function composition, it follows by definition that the
linear transformation T : X→ X is invertible if and only if there is T−1 : X→ X
such that

T−1 ◦ T = T ◦ T−1 = I

Finally, the canonical form of a linear trasformation is provided by the
canonical form of the corresponding matrix. That is, the canonical from of
x 7→ y = Ax is x̃ 7→ ỹ = Λx̃ for Λ = V −1AV, ỹ = V −1y, x̃ = V −1x.

7.2 Powers, Rank, Determinant: Using the Canonical
Form

Let A be a diagonalizable matrix, and let Λ be the diagonal matrix of its eigen-
values and V that of its eigenvectors. We can easily show the following result:

Lemma 178 For any diagonalizable A = V ΛV −1, its determinant is given
by the product of all its eigenvalues,

|A| = |Λ| = λ1λ2...λn

It follows that A is nonsingular and invertible if and only if all its eigenvalues
are nonzero,

|A| 6= 0 ⇔ λj 6= 0∀j
And further, the span or rank of A and that of Λ coincide, with

rank(A) = rank(Λ) = #{λj |j = 1, ..., n;λj 6= 0}

This lemma also happens to be true for non-diagonalizable matrices, but of
course the proof is not nearly as straightforward (see Simon and Blume, Thm.
23.9).
As regards the powers of A, we have:

Lemma 179 For any diagonalizable A = V ΛV −1, and any k ∈ N,

Ak = V ΛkV −1

If A is invertible, then
A−1 = V −1Λ−1V
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and for any k ∈ N
A−k = V −1Λ−kV

Further, since Λ is a diagonal matrix with typical element λj, Λ−1 and Λk are
diagonal matrices with typical elements 1/λi and λ

k
j , respectively.

The last result suggests that for diagonalizable matrices A we may generalize
the definition of Ak for any non-integer k ∈ R. Indeed, for any t ∈ R, and
provided |A| = |Λ| 6= 0 if t < 0, we define

Λt ≡

⎡⎢⎢⎢⎣
λt1 0 ... 0
0 λt2 ... 0
...

...
. . .

...
0 0 ... λtn

⎤⎥⎥⎥⎦
and then simply let

At ≡ V ΛtV −1

We emphasize that this definition applies only when A is diagonalizable, and
we remind you that any symmetric matrix is diagonalizable.

Exercise 180 Use the canonical form to prove that for a symmetric matrix A
it is the case that Ar = V 0ΛrV.

Exercise 181 Use the above result to prove the folowing result: limn−>∞Ar =
0, iff all the eigenvalues of A are smaller than 1.

Exercise 182 Show that |A| = |Λ|.

Exercise 183 The trace of a square matrix is defined as the sum of its diagonal
elements. For instance

for A =

⎡⎣ 1 0 0
0 2 3
0 3 1

⎤⎦ , tr(A) = 4. A convenient property of the trace is that
it is invariant with respect to cyclical permutations, e.g. tr(ABC) = tr(CAB) =
tr(BCA). Use this result to prove that for a symmetric matrix tr(A) = tr(Λ).
Note: in fact, this is true for nondiagonalizable matrices as well, but once again
the proof is not as straightforward or instructive.

Exercise 184 For many applications one is interested in finding a matrix P
s.t.: P 0P = A−1, where A is some symmetric matrix. Find such a matrix.

(Hint: The matrix Λ−1/2 =

⎡⎢⎣ λ
−1/2
1 0 0

0 λ
−1/2
2 0

0 0 λ
−1/2
3

⎤⎥⎦ will come in very

handy.

Exercise 185 Show that A−1 = V −1Λ−1V, where Λ−1 =

⎡⎣ λ−11 0 0

0 λ−12 0

0 0 λ−13

⎤⎦
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Exercise 186 Show that the solutions to |B − λA| = 0 and |A−1B − λI| = 0
are the same.

Exercise 187 Show that, for any diagonalizableA, |Ak| = |A|k.

In a similar way, for any diagonalizable A = V ΛV −1, we may let the expo-
nential of A be

exp(A) ≡ V exp(Λ)V −1

where exp(Λ) is a diagonal matrix with typical element eλi . More generally, we
let

exp(At) ≡ V exp(Λt)V −1

where

exp(Λt) =

⎡⎢⎢⎢⎣
eλ1t 0 ... 0
0 eλ2t ... 0
...

...
. . .

...
0 0 ... eλnt

⎤⎥⎥⎥⎦
Exercise 188 For a diagonal matrix Λ as above, let x(t) = exp(Λt), which
simply means xi(t) = eλit for all i. Characterize the behavior of x(t) as t→∞.

Remark: The results about the powers Λt and At prove useful when we
study systems of (discrete-time) difference equations, while exp(Λt) and exp(At)
when we examine systems of (continuous-time) differential equations.

Lemma 189 Consider the linear system of ordinary differential equations ẋ =
Ax. A solution to that is x(t) = exp(At)x(0).

Lemma 190 Consider the linear system of difference equations xt+1 = Axt. A
solution to that is xt = Atx0.

7.3 Quadratic Forms

We define a quadratic form as a function Q : Rn → R such that

Q(x) = x0Ax =
nX
i=1

nX
j=1

aijxixj

Without loss of generality, we may assume aij = aji and thus A to be symmetric.
Note that Q(x) is a scalar.

Exercise 191 Is the assumption that A is symmetric really ‘without loss of
generality?’ Take Q(x) = x0Ax for arbitrary A and show that there exists
symmetric B such that Q(x) = x0Ax = x0Bx (but see Theorem 193 for a hint).

Definition 192 A quadratic form Q is positive (negative) semidefinite iff Q(x) ≥
0 (≤ 0) for all x. It is positive (negative) definite iff Q(x) > 0 (< 0) for all x 6= 0.
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Note that postive (negative) definiteness implies positive (negative) semi-
definiteness, but not the converse. If a quadratic form satisfies none of these
conditions, we say it is indefinite.
In many economic applications (e.g., static or dynamic optimization, econo-

metrics, etc.), it is important to determine whether a symmetric matrix is pos-
itive/negative definite/semidefinite. The diagonalization of the symmetric ma-
trix A can indeed help us easily characterize the quadratic form Q(x) = x0Ax.
Since A is symmetric, it is necessarily diagonalizable. Letting V be the

orthonormal matrix of eigenvectors and Λ the diagonal matrix of eigenvalues,
we have V 0 = V −1 and V 0AV = Λ, or A = V ΛV 0. Hence

Q(x) = x0Ax

= x0V ΛV 0x

= (V 0x)Λ(V 0x)

= x̃0Λx̃ ≡ R(x̃)

where x̃ = V 0x = V −1x.
Once again, x 7→ x̃ = V −1x is simply a change of basis, and the quadratic

forms Q and R are equivalent. This means that the properties of R are inherited
to Q, and vice versa. In particular,

Q(x) S 0 ∀x ⇔ R(x̃) S 0 ∀x̃

Therefore, Q will be positive/negative definite/semidefinite if and only if so is
R.
Now notice that, since Λ is a diagonal matrix with diagonal element λi, the

quadratic form R is a simple sum (a cone indeed) over all eigenvalues λi:

R(x̃) ≡ x̃0Λx̃ =
nX
i=1

λix̃
2
i

Since x̃2i ≥ 0 for all x̃ (or all x), the following theorem is immediate:

Theorem 193 Let B be an n×n matrix, let Q(x) = x0Ax be the corresponding
quadratic form with A = B+B0

2 symmetric***, and let {λi}ni=1 be the eigenvalues
of A (possibly not all distinct). Then:
(i) A is positive definite if and only if all eigenvalues are positive,

Q(x) > 0 ∀ x 6= 0 ⇔ λi > 0∀i

(ii) A is negative definite if and only if all eigenvalues are negative,

Q(x) < 0 ∀ x 6= 0 ⇔ λi < 0∀i

(iii) A is positive semidefinite if and only if all eigenvalues are nonnegative,

Q(x) ≥ 0 ∀x ⇔ λi ≥ 0∀i
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(iv) A is negative semidefinite if and only if all eigenvalues are nonnegative,

Q(x) ≤ 0 ∀x ⇔ λi ≤ 0∀i

and finally
(v) A is indefinite if and only if there are eigenvalues with opposite signs.

***Note that this theorem must make use of the eigenvalues of A, not B!
For one thing, we cannot guarantee that B is diagonalizable, but we know this
is true of A. Moreover, consider the following:
Question: for a n× n matrix A (not necessarily symmetric) to be positive

definite (in the sense that x0Ax > 0 for any nonzero x ∈ Rn), is it necessary
and/or sufficient that its real eigenvalues are all positive?
Answer: It is necessary. Indeed, assume that λ < 0 is an eigenvalue of A

and v is an eigenvector for this eigenvalue. Then v0Av = λv0v = λ|v|2 < 0, so
A is not positive definite.

On the other hand, it is not sufficient. Consider A =
µ
1 −5
0 1

¶
. Its only

eigenvalue is 1, but for x =
µ
1
1

¶
we have x0Ax = −3.

However, positive definiteness is inherently a property of a quadratic form,
not of a matrix (although it can be defined, as above, in terms of a matrix).
Remember that there exists infinitely many matrices representing a particular
quadratic form (that is, such matrices A that Q(x) = x0Ax), all with generally
different eigenvalues, and exactly one of them is symmetric. What you want to
do to establish positive definiteness (or lack thereof) of a quadratic form is to find
this symmetric matrix representing it (if you have any matrix B then B+B0

2 is
what you are looking for) and test whether its eigenvalues are all positive either
by finding them all or by applying the principal minor method or otherwise).
For example, the symmetric matrix representing the same quadratic form asµ
1 −5
0 1

¶
is
µ

1 −2.5
−2.5 1

¶
; its determinant is negative, so clearly it does

not have both eigenvalues positive and hence the quadratic form is not positive
definite, as I demonstrated explicitly above.

Exercise 194 Let X be an arbitrary real matrix. Show that X 0X is positive
semidefinite.

Theorem 195 Exercise 196 Let X be an m × n matrix with m ≥ n and
rk(X) = n. Show that X 0X is positive definite.

Exercise 197 Show that a positive definite matrix is nonsingular

Exercise 198 Show that if X is symmetric and idempotent, then X is also
positive semi-definite.
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7.4 Static Optimization and Quadratic Forms

The definiteness of a symmetric matrix plays an important role in economic
theory. From single-variable calculus, we are familiar with the idea that the
sign of the second derivative f 00(x0) of a function f(x) at a critical point x0 gives
(assuming the second derivative exists) a necessary and sufficient condition for
determining whether x0 is a maximum of f , a minimum of f , or neither. The
generalization of this test to higher dimensions involves checking the definiteness
of the symmetric matrix of cross-partial second derivatives (or Hessian) of f .
And fortunately, the intuition learned from single-variable calculus carries over
into higher dimensions: just as f 00(x0) ≤ 0 is necessary and sufficient for x0
to be a (local) maximizand of twice-differentiable f , so we find that a function
of more than one variable is concave at a critical point if the matrix of second
derivatives evaluated at that point is negative definite.

Example 199 Consider the function Q(x, y) = 2x3+xy2+5x2+y2. The first
order conditions with respect to x and y give

6x2 + 10x+ y2 = 0

2(x+ 1)y = 0

These conditions give the following four critical points: (0, 0), (−53 , 0), (−1, 2), (−1,−2).

The Hessian is H(x, y) =
∙
12x+ 10 2y
2y 2(x+ 1)

¸
. Then we have

H(0, 0) =

∙
10 0
0 2

¸
. The quadratic form x0H(0, 0)x = 10x2+2y2 > 0 for all

x 6= 0, so this is a local minimum. Similarly we can find x0H(−53 , 0)x =
−10x2 − 4

3y
2 < 0 for all x 6= 0, so this is a local maximum. However,

x0H(−1, 2)x = 8xy − 2x2, and x0H(−1,−2)x = −8xy − 2x2, both of which
are of ambiguous sign. These quadratic forms are indefinite, so these critical
points are neither maxima nor minima.

7.5 Envelope Theorem

When there is a parameter in the optimization problem, how does the value
function (the value of f at the optimum) depend on it? Let’s start with the
simplest case: Unconstrained optimization:

Theorem 200 f : U × I → R where U ⊂ Rn open and I ⊂ R interval is C1 :

f(x, q)

Suppose that for each q, there is a solution x∗(q). If V (q) = f(x∗(q), q) =
maxx∈Rn f(x, q), Suppose that q → x∗(q) is of class C1, then:

dV (q)

dq
=

∂f

∂q
(x∗(q), q)
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Proof. Take the first order condition:∂f∂x (x
∗(q), q) = 0.Now, V 0(q) = ∂f

∂q (x
∗(q), q)+

x∗0(q)∂f∂x (x
∗(q), q) = ∂f

∂q (x
∗(q), q)

We can generalize this:

Theorem 201 Generalization:
Let f(x; q) be a continuous function, and x∗(q) denote the solution to the

problem of maximizing f(x; q) on the constraint set hi(x; q) = 0, i = 1, ..., k.
The Lagrangian is Λ = f(x; q) − λh(x; q) (where the constraints are written as
a vector). Then

df(x∗(q); q)

dq
=

∂Λ

∂q

¯̄̄̄
x=x∗(q)

=
∂f(x; q)

∂q

¯̄̄̄
x=x∗(q)

− λ
∂h(x; q)

∂q

¯̄̄̄
x=x∗(q)

Like in the unconstrained case, this says that we can "ignore" the effect of
x changing as q changes, and focus on the direct effect of changes in q.
Proof. Define the ’value function’ as the value of the objective function at the
maximum. The value function is written as a function of q, not x, because
it is assumed that for any given q, the x0s are simply whichever maximize the
objective function for the given q (this is why we write x∗(q)). Denote this as

M(q) = f(x∗(q), q)

Then differentiating both sides with respect to q, we have

dM(q)

dq
=

∂f

∂x1

∂x1
∂q

+
∂f

∂x2

∂x2
∂q

+ ...+
∂f

∂xn

∂xn
∂q

+
∂f

∂q

From the Lagrangian we have

∂f

∂xi
= λ

∂h

∂xi

Substituting, we have

dM(q)

dq
= λ

∂h

∂x1

∂x1
∂q

+ λ
∂h

∂x2

∂x2
∂q

+ ...+ λ
∂h

∂xn

∂xn
∂q

+
∂f

∂q

Since we know that at the optimum, the constraints bind, we can differentiate
the following identity:

h(x; q) = 0

∂h

∂x1

∂x1
∂q

+
∂h

∂x2

∂x2
∂q

+ ...+
∂h

∂xn

∂xn
∂q

+
∂h

∂q
= 0

Substituting again, we have the desired result:

dM(q)

dq
= −λ∂h

∂q
+

∂f

∂q
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Application: Consider maximization subject to budget constraints

V (I) = max
x

U(x)

px ≤ I

In this example
dV (I)

dI
= λ,

so λ is the marginal utility of wealth (called also the shadow price of the con-
straint).
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