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7 Functions and Calculus

Typically mathematicians rely on the notion of a function as being built in to
general perception of abstract mathematical objects, which means that they do
not bother to rigorously define it. However, given Kantor’s program of redefining
everything in terms of sets only, functions also needed to be so defined. And
the way kantor did it was simple: he just identified a function with its graph.
Namely, a function (for example, from Rn to Rm) is a subset graph(f) of the
Cartesian product Rn×Rm with one restriction that any x ∈ Rn may be mapped
only to one y ∈ Rm,i.e., that (x, y1) ∈ F&(x, y2) ∈ F =⇒ y1 = y2. This last
property allows us to define y = y(x) unambiguously.
Note that according to the definition above a function does not have to map

the entire space Rn to Rm, i.e., it does not have to be the case that ∀x ∈ Rn
∃y ∈ Rm such that (x, y) ∈ graph(f). If such y does exist for a given x (in which
case it is unique by definition), we say that x belongs to the domain of f .

Exercise 123 Find the domains of the following functions f : R→ R :

1. f(x) =
√
x

2. f(x) = 1
x2+2x−3

3. f(x) = 1
sinx +

1
cosx

A subset of Rn × Rm can easily be converted to a subset of Rm × Rn by
switching coordinates. The resulting subset does not have to be a function (in
the sense that there does not have to be unique x associated with each y), but
if it is a function it is called the inverse function and is denoted f−1(y).
The above definitions are quite abstract, but the main idea of a function is

probably clear to everybody.
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The concept of a function (usually in terms of one variable being uniquely
determined by another, in our case y being determined by x) has been under-
stood for a very long time, by the ancient Greeks at least (although they did not
quite operate in terms of variables, let alone using letters to denote variables,
which was introduced by a French mathematician Vieta in late XVI century for
purposes entirely different from those we use them for nowadays). The birth
of modern calculus is dated back to Newton and Leibniz I think (in the mid
XVII century) and the fundamental notion they managed to give a formal defi-
nition for was continuity. Informally, a continuous function is a function, whose
graph we can draw in one touch of a pencil, without taking it off the paper.
Although intuitively quite appealing, this “definition” is not operative, so we
need a formal (and, of course much less intuitive) one:

Definition 124 A function f : X ⊂ Rn → Rm is said to be continuous at point
x0 ∈ X if ∀ε > 0∃δ > 0 such that as f(x) ∈ Bε(f(x0)) ⊂ Rm∀x ∈ Bδ(x0). A
function is said to be continuous on X if it is continuous at each point of X.

Example 125 f(x) = sign(x) =

⎧⎨⎩ −1, x < 0
0, x = 0
1, x > 0

is continuous at all points

except 0.

Example 126 D(x) =

½
1, x ∈ Q
0, x /∈ Q is not continuous anywhere (it is called

Dirichlet function after another French mathematician Lejeune Dirichlet, 1805-
1859)

Example 127 g(x) = xD(x), where D(x) is Dirichlet function defined above,
is continuous at x0 = 0 and nowhere else.

Example 128 R(x) =

½ 1
q , x = p

q , with minimum possible p and q

0, x /∈ Q is con-

tinuous at all irrational points x /∈ Q and not continuous at rational points
(it is called Riemann function after a German mathematician Georg Riemann,
1826-1866).

Exercise 129 Make sure that you fully understand the examples above.

Example 130 Usual functions are continuous on their domains: ln, exp, sin,
cos, polynomials, radicals.

Lemma 131 A sum, a difference and a product of two continuous functions
are continuous; a ratio of two continuous functions is continuous at all points
where the denominator does not vanish.

Let f be a strictly increasing continuous function on [a, b] then f([a, b]) =
[f(a), f(b)] and f is a one-to-one function from [a, b] onto [f(a), f(b)].
Then the inverse f−1 is a one-to-one function from [f(a), f(b)] onto [a, b].

48



Theorem 132 If f is continuous and increasing then so is f−1.

Draw graph and note that f and f−1 are symmetric with respect to the 450

line.

Definition 133 A function on I = [a, b] bounded interval is piece-wise con-
tinuous if it is continuous everywhere except on a finite number of points in I
and that at every point where it is not continuous it admits left and right limits.

7.1 First Optimization Result: Weierstraß Theorem

Theorem 134 (Weierstraß) If X ⊂ Rn is a compact set and f : X → R is
a continuous function, then f attains a maximum on X, that is, there exists a
point x∗ ∈ X such that ∀x ∈ X f(x) ≤ f(x∗).

Corollary 135 ... and it attains a minimum.

Note: this result is guarantees an existence of an optimal solution to many
economic problems.
We may generalize it to compact subsets of Rn. A set A ⊆ Rn is called

compact if it is closed and bounded. A set is closed if it contains all limits of
sequences of its points.
This result is the cornerstone of all optimization theory. It guarantees that

there definitely exists an optimum in a wide class of problems that we will
see when we study economics. Besides, it reveals why we prefer dealing with
compact (and hence closed) sets, despite them being more ”difficult” than open
sets (as closed sets typical have points of two kinds — interior and boundary —
while open sets only have points of the former kind): on open sets optimization
is not guaranteed to be successful, as the following examples show.

Example 136 Let X = (0, 1) and f(x) = 1
x . The set is bounded and the func-

tion is continuous on it, but it attains no maximum. That is because the set is
not closed.

Example 137 Let X = [0,+∞) and f(x) = x2.The set is closed and the func-
tion is continuous on it, but it attains no maximum. That is because the set is
is not bounded.

Example 138 Let X = [0, 1] and f(x) =
½

1
x , x > 0
0, x = 0

. Then the set is closed

and bounded, but the function attains no maximum. That is because it is not
continuous.

Example 139 Let X = (0,+∞) and f(x) =

½
1, x ∈ Q
0, x /∈ Q .Then the set is

neither closed nor bounded, and the function is not continuous, and yet it attains
a maximum. That is because conditions stated in the theorem are sufficient but
not necessary.
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Exercise 140 Consider standard consumer optimization problem:

maxu(x1, x2)
s.t. p1x1 + p2x2 = I

What restrictions on parameters p1, p2 and I are sufficient for Weierstraß
theorem to be applicable? What about on x1 and x2?

Theorem 141 Intermediate Value Theorem Let f be a continuous func-
tion on a closed interval [a, b]. Then for any m in the interval [f(a), f(b)] or
([f(b), f(a)]), there is some c ∈ [a, b] such that f(c) = m.

Proof. Suppose f(a) < f(b). Let S = {x ∈ [a, b]|f(x) ≤ m}, S non empty and
bounded. So consider c = supS. Take xn converging to c, of course f(xn) ≤ m
so f(c) ≤ m. Now take xn > c converging to c. f(xn) > m so the limit
f(c) ≥ m. So f(c) = m.
Example: existence of an equilibrium price. If Supply(0) = Demand(+∞) =

0 and Supply(+∞) = Demand(0) = +∞ then :∃p / Supply(p) = Demand(p).

This example is related to fixed point theorems:

Theorem 142 (Brouwer’s) Let A be a convex and compact subset of R (or Rn)
and let f : A→ A be a continous function. Then, there exists a fixed point of f
that is a point x ∈ A such that

f (x) = x

A set A ⊆ Rn is called convex if a, b ∈ A implies that the entire segment
between a and b is contained in A.

Theorem 143 (Tarski’s) Let A be a set with ordering ≤ such that each subset
of A has a sup and an inf. Let f : A → A be monotonic (weakly increasing or
decreasing). Then, f has a fixed point.

Theorem 144 (Banach’s) Let A be a space with metrics d (·, ·) and f : A→ A
be a contraction that is there exists λ ∈ (0, 1) such that

d (f (x) , f (y)) ≤ λd (x, y) .

Then, f has a unique fixed point.

A (Kakutani’s) version of the Brouwer theorem is used to prove the existence
of Nash equilibria in many games. Tarski’s theorem is used to prove existence
of equilibria of supermodular games. Banach’s theorem is the workhorse of the
theory of differential equations that will be studied in 14.102.
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7.2 Convexity

Definition 145 f : I −→ R a function on I. f is convex iff for any x and y
in I and any 0 < λ < 1

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

f is concave iff for any x and y in I and any 0 < λ < 1

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

Useful facts:
- f concave iff −f convex (idem for strictly)
- sum of convex functions is convex.
- sum of concave functions is concave.
Convex (concave) function is below (above) the segment [(x, f(x)) , (y, f(y))].
Convexity guarantees uniqueness of a maximum (provided a maximum ex-

ists). Convexity of a continuous function on a compact domain in Rn guarantees
(a) existence of the maximum and (b) uniqueness of the maximum. This is often
used in maximization problems.
What about concave functions?
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