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8 Calculus: Basic Integration in R

A function on a bounded interval [a, b] is piece-wise continuous if it is continuous
everywhere except on a finite number of points in I and that at every point where
it is not continuous it admits finite left and right limits.

Definition 202 For piecewise continuous functions on interval I, we define for
any a and b in I (a < b):Z b

a

f(x)dx = lim
n→+∞

b− a

n

nX
k=1

f(a+
k

n
(b− a))

By definition:
R a
b
f(x)dx = −

R b
a
f(x)dx

The geometric interpretation of this integral (the Riemann integral) is the
area under the curve. Look at the notation. Can show that such a limit exists.
There are problems with this notion of the integral; too often it is not well
defined.
It is possible to extend the definition of Riemann integral to a broader class of

functions. One such useful generalization is Lebesgue integral based on measure
theory. First note that measure theory generalizes the notions of length, area,
and volume; a dose of it is helpful for studying probability theory for statistics
and econometrics. Dividing [a, b] into any measurable sets and using measures
of set instead of lengths of intervals we can reproduce the above definition and
basically construct the Lebesgue integral. The payoff from this more elabo-
rate construction is that the limit “often” exist, and hence any “well-behaved”
function is measurable and admits an integral (you may encounter some mea-
surability problems in stochastic dynamic programming though).
Note, an important property of the Lebesgue integral is that the integral over

sets of measure 0 has value 0 which is not necessarily the case for the Riemann
construction! Otherwise Lebegue’s has pretty much the same properties as

65



Riemann’s (and it gives the same number as Riemann’s whenever Riemann’s
exists).
A key example – probability density f(x) and cumulative distribution F (x).

Proposition 203 Useful properties of the integral:

• if f ≥ 0 and b ≥ a, then
R b
a
f ≥ 0

•
R b
a
(f + g) =

R b
a
f +

R b
a
g

•
R
λf(x)dx = λ

R
f(x)dx

•
R b
a
f(x)dx =

R c
a
f(x)dx+

R b
c
f(x)dx

• if f(x) ≤ g(x) for all x ∈ [a, b] then
R b
a
f(x)dx ≤

R b
a
g(x)dx

• |
R b
a
f(x)dx| ≤

R b
a
|f(x)|dx

• |
R b
a
f(x)dx| ≤ sup |f(x)| × |b− a|

• |
R b
a
f(x)g(x)dx| ≤ sup |f(x)|

R b
a
|g(x)|dx

Useful primitives:

•
R b
a
(1/x)dx = ln(b)− ln(a)

•
R b
a
exp(x)dx = exp(b)− exp(a)

•
R b
a
tαdt = bα+1−aα+1

α+1

8.1 Fundamental Theorem of Calculus

(a) Let f be integrable on an interval I, and let a ∈ I. Let F (x) =
R x
a
f(t)dt. If

f is continuous at x then F is differentiable at x and

F 0(x) ≡ d

dx

∙Z x

a

f(t)dt

¸
= f(x).

(b) Suppose that F is differentiable on an interval I and that F 0 = f is
integrable. Then Z b

a

f(x)dx = F (b)− F (a) for a, b ∈ I.

Proof.
(a)

F 0(x) = lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

R x+h
a

f(t)dt−
R x
a
f(t)dt

h
= lim

h→0

R x+h
x

f(t)dt

h
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Since, f is continuous at x so for any ε > 0 if h is small enough then we have

|f (x+ h)− f (x)| < ε

and thus, if we define x∗ as x∗ = x : |f(x∗)−f(x)| = supx0∈[x,x+h] |f(x0)−f(x)|,
we have¯̄̄̄
F (x+ h)− F (x)

h
− hf (x)

h

¯̄̄̄
=

¯̄̄̄
¯
R x+h
x

f(t)dt

h
− hf (x)

h

¯̄̄̄
¯ ≤

¯̄̄̄
hf(x

∗
)

h
− hf (x)

h

¯̄̄̄
<

hε

h
= ε

as h→ 0 we can take ε→ 0 and thus

F 0 (x) = lim
h→0

F (x+ h)− F (x)

h
= f (x) .

(b) Let’s consider only the easy case when f is continuous. Denote G (x) =R x
a
f(t)dt and notice that by (a) G0 = f . Hence, F and G have same derivative,

and (F −G)
0
= 0 and thus F −G is constant, denote it c. Thus,

F (b)− F (a) = (G (b) + c)− (G (a) + c)

= G (b)−G (a) =

Z b

a

f(t)dt.

8.2 Change of variables and Integration by parts

The following two immediate consequences of the fundamental theorem of cal-
culus are useful integration tools.

Theorem 204 Change of variables: Let J1 and J2 be intervals (with more
than one point):Let f : J1 → J2 and g : J2 → R continuous. Assume that f is
differentiable and f 0 continuous. Then for any a, b in J1Z b

a

g(f(x))f 0(x)dx =

Z f(b)

f(a)

g(u)du (14)

Proof. Let G0 = g. Then (G◦f)0 = g(f(x))f 0(x) by the chain rule. Both terms
in (14) are equal to G(f(b))−G(f(a)).

Example 205 I =
R 1
0
2xex

2

dx, say u = ex
2

and du = 2xex
2

, I =
R e
1
du = e−1.

Example 206 Let us show the following, useful for moving from a normal to
a standard normal distribution: If f (x) is any pdf and µ and σ > 0 are any
given constants, then the function g(x|µ, σ) = 1

σf(
x−µ
σ ) is a pdf.

To verify this, we must check that for all values of µ and σ, g(x|µ, σ) is
nonnegative and integrates to 1. That it is nonnegative follows immediately
from the fact that f(x) is itself a pdf, and therefore is nonnegative for all values
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of x (including x−µ
σ ). To check that g integrates to 1, we use the change of

variables y = x−µ
σ , dy = 1

σdx to writeZ ∞
−∞

1

σ
f(

x− µ

σ
)dx =

Z ∞
−∞

f(y)dy = 1

since f (y) is a pdf.

Be familiar with the following two important special cases:Z b

a

f(t+ α)dt =

Z b+α

a+α

f(u)du

Z b

a

f(αt)dt =

Z αb

αa

f(u)

α
du

Proposition 207 Integration by parts: Suppose F and G are differentiable
on [a, b]. Suppose F 0 = f and G0 = g. are continuous. Then:Z b

a

f(t)G(t)dt = [F (b)G(b)− F (a)G(a)]−
Z b

a

F (t)g(t)dt

You can obtain this formula quickly by noticing that [FG]0 = fG+ Fg.

Exercise 208 Find
R x
a
log(t)dt .

8.3 Differentiation Under the Integral Sign

Often we encounter situations under which we wish to interchange the order of
integration and differentiation.

Proposition 209 Leibniz rule: If f(t, x), a(x), and b(x) are differentiable
with respect to x, then:

d

dx

Z b(x)

a(x)

f(t, x)dt =

Z b(x)

a(x)

∂f(t, x)

∂x
dt+ b0(x)f(b(x), x)− a0(x)f(a(x), x)

Note that if a(x) and b(x) are constant, we have a special case:

d

dx

Z b

a

f(t, x)dt =

Z b

a

∂f(t, x)

∂x
dt

Notice that this question really comes down to when it is justifiable to ex-
change the order of integration and a limit, since the derivative is a particular
kind of limit. A full treatment of this question requires a bit of measure the-
ory, which we won’t go into here. However, a couple important results can
be presented, all of which are variations on Lebesgue’s Dominated Convergence
Theorem (see Rudin; see also section 2.4 of Casella and Berger).
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Theorem 210 Suppose the function h(x, y) is continuous at y0 for each x, and
there exists a function g (x) satisfying

1. |h(x, y)| ≤ g(x) for all x and y,

2.
R∞
−∞ g(x)dx <∞

Then

lim
y→y0

Z ∞
−∞

h(x, y)dx =

Z ∞
−∞

lim
y→y0

h(x, y)dx

The key condition is the existence of a dominating function g(x), with a
finite integral, which ensures that the integral of h(x, y) cannot be too badly
behaved. If we apply this to the case we are interested in, the derivative, we
have

Theorem 211 Suppose f(t, x) is differentiable at x = x0, that is,

lim
h→0

f(t, x0 + h)− f(t, x0)

h
=

∂

∂x
f(t, x)

¯̄̄̄
x=x0

exists for every t, and there exists a function g(t, x0), for all t and a constant
h0 > 0 such that

1.
¯̄̄
f(t,x0+h)−f(t,x0)

h

¯̄̄
≤ g(t, x0), for all t and |h| ≤ h0,

2.
R∞
−∞ g(t, x0)dx <∞.

Then
d

dx

Z ∞
−∞

f(t, x)dx

¯̄̄̄
x=x0

=

Z ∞
−∞

∙
∂

∂x
f(t, x)|x=x0

¸
dx

The conditions essentially bound variability in the derivative of the function;
they are similar to a smoothness condition called the Lipschitz condition. Most
of the applications of these results which you’ll see will come in statistics and
econometrics, where many results in asymptotic theory examining the conver-
gence behavior of a function as our data become infinite begin with a condition
bounding the variance of the function in question.
Note that the theorem is stated for a particular value of x; often we have

functions which are differentiable over some interval, and the theorem holds for
x within this interval instead of a single value of x:

Theorem 212 Suppose f(t, x) is differentiable in x and there exists a function
g(t, x) and a constant h0 such that

1.
¯̄
∂
∂xf(t, x)

¯̄
x=x0

≤ g(t, x) for all x0 such that |x0 − x| ≤ h0

2.
R∞
−∞ g(t, x)dt <∞.
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Then
d

dx

Z ∞
−∞

f(t, x)dt =

Z ∞
−∞

∂

∂x
f(t, x)dt

Example 213 (moment generating functions, from Casella and Berger)
The moment generating function of a continuous random variable X is given by

MX(t) =

Z ∞
−∞

etXfX(x)dx

Casella and Berger (Thm 2.3.7) tell us how to generate the moments of a
distribution using the mgf:

EXn =M
(n)
X (0) ≡ dn

dtn
MX(t)|t=0

But the proof of this result assumes that we can interchange differentation
and integration as follows:

d

dt
MX(t) =

d

dt

Z ∞
−∞

etXfX(x)dx =

Z ∞
−∞

µ
∂

∂t
etX

¶
fX(x)dx = E(XetX)

(we are focusing here on the first moment; plugging t = 0 into the last
expression gives d

dtMX(t) = EX, and the proof for higher moments continues
in similar fashion, making similar assumptions about the interchangability of
integration and differentiation).
We will show that this is true explicitly for a normal distribution with mean

µ and variance 1 (to simplify the computations). We have

MX(t) = EetX =
1√
2π

Z ∞
−∞

etxe−(x−µ)
2/2dx

Applying the previous theorem requires finding a function g(x, t) with finite
integral such that¯̄̄̄

∂

∂t
etxe−(x−µ)

2/2|t=t0
¯̄̄̄
≤ g(x, t) for all t0 such that |t0 − t| ≤ h0 (*)

We have¯̄̄̄
∂

∂t
etxe−(x−µ)

2/2

¯̄̄̄
=
¯̄̄
xetxe−(x−µ)

2/2
¯̄̄
≤ |x| etxe−(x−µ)2/2

Now, define g (x, t) separately for x ≥ 0 and x < 0:

g(x, t) =

(
|x| e(t−h0)xe−(x−µ)2/2 if x < 0

|x| e(t+h0)xe−(x−µ)2/2 if x ≥ 0

By construction, this function satisfies (*). But we need to check that its
integral is finite.
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For x ≥ 0,
g(x, t) = xe−(x

2−2x(µ+t+h0)+µ2)/2

We can complete the square in the exponent, writing

x2 − 2x(µ+ t+ h0) + µ2 = x2 − 2x(µ+ t+ h0) + (µ+ t+ h0)
2 − (µ+ t+ h0)

2 + µ2

= (x− (µ+ t+ h0))
2 + µ2 − (µ+ t+ h0)

2

and now we have, for x ≥ 0,

g(x, t) = xe−(x−(µ+t+h0))
2/2e−(µ

2−(µ+t+h0)2)/2

but the last exponential function doesn’t depend on x, and so we know thatR∞
0

g(x, t)dx is equal to a constant multiplied by a function which can be bounded
by the mean of a normal distribution with mean µ+t+h0. Because we know that
a normal distribution has finite mean (proven in Casella and Berger, Ch. 3),
and employing a symmetric argument to cover the ’rest’ of the integral (where
x < 0), we have shown that g(x, t) has a finite integral, justifying our exchange
of differentiation and integration in using the mgf to calculate moments.

8.4 Improper Integrals

Remark: improper integral: if limA→+∞
R A
a
f(t)dt exists, we note it

R +∞
a

f(t)dt

Example 214
R +∞
a

e−rtdt = [− e−rt

r ]+∞a = e−ra

r

Exercise 215 compute
R +∞
a

te−rtdt (use an integration by parts)

Exercise 216 compute
R +∞
0

e−
√
tdt (use the change of variable u =

√
t)
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