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8 Differentiability and Derivatives

8.1 The Derivative

Weierstraß theorem guarantees that an optimum exists (under specified restric-
tions on the set and the function). However, it gives absolutely no clue how to
find an optimum. Our next step on the path towards learning to optimize (which
is essentially our main objective in this course) is studying necessary and/or suf-
ficient conditions for optima. As usually, more definitive results require more
structure, and in this case it is the notion of differentiability.
Informally, a function is called “smooth” if it is continuous and its graph has

no kinks. Here is a formal definition:

Definition 146 Function f : X ⊂ Rn → Rm is called differentiable at point
x0 ∈ X if it can be decomposed as follows:

f(x) = f(x0) +Dxof · (x− x0) + α(x− x0), where

• α(x−x0) is small compared to x−x0, i.e., kα(x−x0)kkx−x0k → 0 as kx− x0k→
0.

• Dx0f is a linear function from Rn to Rm.

A function is said to be differentiable on X if it is differentiable at any point
x0 ∈ X.

If n = m = 1, then Dx0f is a number, called the derivative of f at x0,
denoted by f 0(x0) or

df
dx(x0);

If m = 1 and n > 1, then Dx0f is a row 1× n vector called the gradient of
f at x0, denoted ∇f(x0);
Finally, if n > 1 and m > 1, then Dx0f is an m×n matrix called the Jakobi

matrix, sometimes denoted Jf (x0).
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Generally, Dx0f is a linear function that can help approximate f around x0.
It does not have to exist though.
Notice that this definition explicitly generalizes the usual definition for func-

tions mapping the real line to the real line to more dimensions:

Definition 147 The derivative of f at x is

f 0(x) ≡ df

dx
(x) = lim

h→0

f(x+ h)− f(x)

h
.

When the the limit exists the function is called differentiable at x. We use the
term differentiable function to denote functions differentiable at every point in
the domain.

The deriviate has a nice geometric interpretation: it is the slope of the
tangent. Another way to write it is:

f(x+ h) = f(x) + hf 0(x) + h�(h) = f(x) + hf 0(x) + o(h) (14)

o(h) is a quantity that can be written o(h) = h�(h) where �(h) → 0 as h → 0.
The notation o(h) is often used (e.g. in 14.381) and denotes a quantity negligible
relative to small h i.e. such that limh→0

o(h)
h = 0.

Instead of h one can also write dx. Using the dx notation one often drops
o (dx):

f(x+ dx) = f(x) + f 0(x)dx+ o(dx) = f(x) + f 0(x)dx

Lemma 148 If a function is differentiable at a point, it is continuous at that
point.

Example 149 f(x) = |x| is differentiable everywhere except at x0 = 0.

Example 150 Usual functions are differentiable on their domains: ln, exp, sin,
cos, polynomials, radicals.

Any function of n variables f(x1, ..., xn) can also be viewed as a function
of one variable x1 which depends on parameters x2, ..., xn. Similarly it can be
viewed as a function of x2 only, that depends on parameters x1, x3, ..., xn. and
so on. If f is differentiable as a function of x1 at x0, its derivative (called partial
derivative of f with respect to x1) is denoted

∂f
∂x1
(x0); similarly we can define

∂f
∂x2

, ..., ∂f
∂xn

. The following lemma is straightforward but important conceptually.

Lemma 151 If f : X ⊂ Rn is differentiable as a function of n variables at point
x0, then it is also differentiable as a function of any of its variable at x0 when the

other variables are viewed as parameters, and ∇f(x0) =
³

∂f
∂x1
(x0), ...,

∂f
∂xn

(x0)
´
.

The converse generally is not true:

Example 152 Let f(x, y) = sign(xy). Then all (i.e. both) partial derivatives
of f at (0, 0) exist, but f is not differentiable at (0, 0) (and even not continuous).
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Definition 153 A function f : X ⊂ Rn → R is said to belong to class C1[X]
if it is differentiable on X and its gradient (or simply derivative for n = 1) is
continuous on X.

Proposition 154 Differentiable functions f ,g are continuous and:

• (f + g)0 = f 0 + g0, (fg)0 = f 0g + g0f, ( fg )
0 = f 0g−g0f

g2

• (f ◦ g)0(x) = f 0(g(x))g0(x)

• (ln)0(x) = 1/x, (exp)0 = exp, (xn)0 = nxn−1, (sin)0 = cos, (cos)0 = −sin

• (fα)0 = αf 0fα−1

Proof of the formula on differential of the product. Let f(x + h) = f(x) +
hf 0(x) + o(h) and g(x+ h) = g(x) + hg0(x) + o(h). Note that we use same o(h)
even though the two o’s are really different. Then

f(x+ h)g(x+ h) = [f(x) + hf 0(x) + o(h)][g(x) + hg0(x) + o(h)]

= f(x)g(x) + h (f 0 (x) g (x) + f (x) g0 (x)) + o (h)

and after moving f(x)g(x) to the LHS, dividing by h, and taking limit as h→ 0
we obtain the formula from the proposition.

8.2 Mean Value Theorem

Lemma 155 (Fermat’s or “hills are flat at the top” theorem) Let f be differen-
tiable on (a, b) and let c ∈ (a, b) be a max for f : f(c) ≥ f(x) for any a < x < b.
Then f 0(c) = 0

Proof. f(c + h) ≤ f(c) so (f(c + h) − f(c))/h ≤ 0 for h > 0 so right limit is
less or equal to zero, so f 0(c) ≤ 0. For h < 0, get f 0(c) ≥ 0. QED.
Of course same thing true for a minimum. Careful: need differentiability

assumption and open set to avoid corner solutions.
This theorem is the basic tool used to find maxima and minima. If a function

is differentible, then to find its maximum we need to check

• values at the boundary of the domain

• internal points x satysfying so called “first order condition”

f 0 (x) = 0

Theorem 156 Mean Value Theorem. Let f be continuous on [a, b] and be
differentiable on (a, b). Then there is c ∈ (a, b) such that f(b)−f(a) = f 0(c)(b−
a).

Hint for the proof: consider f (t)− f(b)−f(a)
b−a (t− a) and apply Fermat’s The-

orem.
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Proposition 157 Let f be continuous on [a, b], differentiable on (a, b) and
f 0(x) > 0 for all x ∈ (a, b). Then f is strictly increasing. Similarly f 0(x) < 0
implies f strictly is decreasing.

For proof use Mean Value Theorem. Converse not exactly true. Example
x→ x3.
Proposition. Let f be continuous on [a, b] and be differentiable on (a, b).

1. f 0(x) ≥ 0 for all x iff f is weakly increasing.

2. f 0(x) ≤ 0 for all x iff f is weakly decreasing.

3. f 0(x) = 0 for all x iff f is constant.

8.3 High Order Derivatives and Taylor Expansions.

The derivative of a function f(t) of one variable is itself a function f 0(t) of one
variable. Therefore we can easily define the second derivative as the derivative
of the derivative (this does not have to exist, of course). Similarly we define the
third derivative, the fourth derivative and so on. We say that f(x) ∈ Ck(X) if
the k-th derivative of f exists at each point of X and is continuous on X (that
immediately implies that all derivatives of lower order exist and are continuous
as well.

Example 158 Usual functions are infinitely many times differentiable on their
domains: ln, exp, sin, cos, polynomials, radicals.

The very definition of differentiability tells us how a differentiable function
behaves around point x0 : it is equal to f(x0) plus a linear term f 0(x0) · (x−x0)
plus some α which is “of the higher order than linear”, i.e., goes to zero “faster”
than x − x0 itself (in the precise sense defined above). As always,imposing
additional structure (in our case, assuming existence of higher order derivatives
at x0) enables us to come to more specific conclusions (in our case to further
decompose the black box α into simpler pieces.

Theorem 159 (Taylor Decomposition in R1): Suppose that f : X ⊂ R→ R is
a Ck function and x0 is a point in X. Then f(x) can be decomposed as follows:

f(x) = f(x0) + f 0(x0) · (x− x0) +
f 00(x0)
2! · (x− x0)

2+ ...+ f(k)(x0)
k! · (x− x0)

k +

o(x− x0)
k, where o(x−x0)k

(x−xk)k → 0 as (x− x0)→ 0.

Essentially this means that a smooth enough function locally can be very
well approximated by a polynomial whose coefficients are related to derivatives
of the function.
Having seen this k-term Taylor decomposition for a Ck function one may be

tempted to conclude that a C∞ function can be similarly decomposed into an

infinite series
P

ak, where ak =
f(k)(x0)

k! (x − x0)
k. This conclusion is generally
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wrong: such infinite series does not have to converge at all (making the infinite
sum meaningless) and, moreover, even if it does converge, it may converge to
something other than f(x), as the following example illustrates.

Example 160 Let f(x) =
½

e−
1
x2 , x 6= 0
0, x = 0

. Then f(x) is infinitely differen-

tiable at all points (including zero) and all its derivatives at x0 = 0 are equal to
zero, thus making the above mentioned infinite sum equal to zero at any point
x, whereas f(x) > 0 for all x 6= 0.

Things get more complicated when we consider functions of multiple vari-
ables. For a function f(x) : Rn → R, its gradient ∇f(x) is a function Rn → Rn,
so its derivative will be an n × n matrix (called the Hessian of f), which will
be a matrix function of the point at which it is evaluated. If we attempted to
differentiate that, we would end up with objects of structure that is unknown
to us (something like a 3D matrix), so we restrict ourselves to second order
derivatives.

Lemma 161 If f(x1,..., xn) is a C2 function around point x0 ∈ Rn, then
∂2f

∂xi∂xj
(x0) =

∂2f
∂xj∂xi

(x0). Thus the Hessian Hf (x0), which is defined as an n×n

matrix of crosspartials of f(x) (i.e., hij =
∂2f

∂xi∂xj
), is a symmetric matrix.

Finally we state the Taylor decomposition theorem for Rn. For the reasons
discussed above, we only go up to the second term.

Theorem 162 (Taylor decomposition in Rn): Suppose that F : X ⊂ Rn → R
is a C2 function and x0 is a point in X. Then F (x) can be decomposed as follows:

F (x) = F (x0)+∇F (x0) · (x−x0)+(x−x0)0HF (x0)(x−x0)+β(x−x0), where
kβ(x−x0)k
kx−x0k2

→ 0 as (x− x0)→ 0.

8.4 Implicit Function Theorem

Definition 163 A level curve for a function f : U ⊂ Rn → R is a curve in
Rn defined by f (x) = C

Let F (x, y) = x2+y2 (which is a C1 function) and suppose we are interested
in the level curve F (x, y) = c. Pick a point (x∗, y∗) on this curve and ask
yourself if y is expressible as a function of x along the curve F (x, y) = c around
this point. The answer is “almost always yes”: if y∗ > 0, then for x close
enough to x∗ we have y(x) =

√
c2 − x2; if y∗ < 0 then (again, for x close

enough to x∗) we have y(x) = −
√
c2 − x2. Note that in either case y(x) is

a C1 function and its derivative y0(x∗) can be easily found by differentiating
through the identity F (x, y(x)) = c at point x∗ : by the chain rule we have
∂F
∂x (x

∗, y∗) + ∂F
∂y (x

∗, y∗) · y0(x∗) = 0, so y0(x∗) = −
∂F
∂x (x

∗,y∗)
∂F
∂y (x

∗,y∗)
. Note that for

the last formula to work, we need ∂F
∂y (x

∗, y∗) 6= 0 and the two points where
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∂F
∂y (x

∗, y∗) = 0 are exactly points (1, 0) and (−1, 0) where y can not be locally
represented as a well defined function of x.
The following theorem captures the intuition for the example above:

Theorem 164 (Implicit Function Theorem): Let F (x1, ..., xn) be a C1 func-
tion around the point (x∗1, ..., x

∗
n, y
∗) such that ∂F

∂y (x
∗
1, ..., x

∗
n, y
∗) 6= 0. Denote

c = F (x∗1, ..., x
∗
n, y
∗). Then there exists a C1 function y = y(x1, ..., xn) defined

around (x∗1, ..., x
∗
n) such that:

• F ((x1, ..., xn, y(x1, ..., xn)) = c

• y∗ = y(x∗1, ..., x
∗
n)

• ∂y
∂xi
(x∗1, ..., x

∗
n) = −

∂F
∂xi

(x∗1,...,x
∗
n,y
∗)

∂F
∂y (x

∗
1,...,x

∗
n,y
∗)
.

What this theorem tells you is basically that if you have one equation you
can, provided some regularity conditions, solve for one unknown as a function of
the other unknowns. In economic language we say that one variable (in our case
y) is determined endogenously as a function of the other (exogenous) variables.
It is important to note that, typically, the regularity condition (that the

relevant partial is nonzero) will be satisfied for more than one variable. Con-
sequently, this theorem may be applicable in more than one way, i.e., you can
choose which variable to express in terms of others. Hence, which variables are
exogenous and which are endogenous is determined from the economic story
behind your equation, math per se does not help you to figure it out.
Finally, a similar theorem applies for more than one (say, k) equations. In

this case, provided you have similar regularity conditions (that have to do with
the rank of relevant Jakobi matrix), you can (locally) solve for k variables (to
be therefore endogenous) in terms of the other n − k (which are, therefore,
considered exogenous).

Example 165 Consider the following ISLM model developed by Bernanke and
Blinder to study the lending channel of monetary policy:

L(ρ, i, y) = λ(ρ, i)D(1− τ) (15)

D(i, y) = m(i)R (16)

y = Y (i, ρ) (17)

Equation (15) gives the market clearing condition in the loan market (the
left-hand side is demand, the right-hand side supply). D is the deposits held by
banks, τ is the fraction of deposits required to be held in reserves by banks to back
up their deposits, λ() is the fraction of non-required reserves that are supplied as
loans, i is the interest rate on bo nds, and ρ is the interest rate on bank lonas.
Note that Lρ < 0, Ly > 0, and λρ > 0. Equation (16) is the money market
clearance condition (LM curve), where D() is the demand for deposits, m is the
money multiplier, and R is the reserves of the banking system. Equation (17)
closes the model, and is the goods market clearing condition.
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Using Equations (15) and (16), we can find an implicit function for ρ in
terms of i, y, and R:

F (i, y,R, ρ) = L(i, y, ρ)− λ(ρ, i)(1− τ)m(i)R = 0

Moreover, we can use this implicit function theorem to show that ∂ρ
∂y > 0 and

∂ρ
∂R < 0 :

∂ρ

∂y
= −Fy

Fρ
= − Ly

Lρ − λρ(1− τ)m(i)R
> 0

∂ρ

∂R
= −FR

Fρ
= − −λ(ρ, i)(1− τ)m(i)

Lρ − λρ(1− τ)m(i)R
< 0

(Intuitively, a higher income level, y, increases the demand for loans, and
all else being equal it must be that the interest rate rises in order to raise supply
to meet this demand; a higher amount of reserves R increases the amount
of money and deposits in the economy, driving up the supply of loans, so the
interest rate must fall to restore equilibrium.)

58




