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9 Quasiconvexity and Quasiconcavity

One problem with concavity and convexity (which we’ll encounter again when
we look at homogeneity) is that they are cardinal properties. That is, whether
or not a function is concave depends on the numbers which the function assigns
to its level curves, not just to their shape. The problem with this is that a
monotonic transformation of a concave (or convex) function need not be concave
(or convex). For example, f(x) = −x

2

2 is concave, and g(x) = ex is a monotonic

transformation, but g(f(x)) = e−
x2

2 is not concave. This is problematic when
we want to analyze things like utility which we consider to be ordinal concepts.
A weaker condition to describe a function is quasiconvexity (or quasiconcav-

ity). Functions which are quasiconvex maintain this quality under monotonic
transformations; moreover, every monotonic transformation of a concave func-
tion is quasiconcave (although it is not true that every quasiconcave function
can be written as a monotonic transformation of a concave function).

Definition 166 A function f defined on a convex subset U of Rn is quasicon-
cave if for every real number a,

C+a ≡ {x ∈ U : f(x) ≥ a}

is a convex set. Similarly, f is quasiconvex if for every real a,

C−a ≡ {x ∈ U : f(x) ≤ a}

is a convex set.

The following theorem gives some equivalent definitions for quasiconcavity:

Theorem 167 Let f be a function defined on a convex subset U in Rn. Then
the following statements are equivalent:
(a) f is a quasiconcave function on U.
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(b) For all x, y ∈ U and all t ∈ [0, 1],

f(x) ≥ f(y) implies f(tx+ (1− t)y) ≥ f(y)

(c) For all x, y ∈ U and all t ∈ [0, 1],

f(tx+ (1− t)y) ≥ min{f(x), f(y)}

Exercise 168 For a function f defined on a convex subset U in Rn, show that
f concave implies f quasiconcave.

The previous exercise shows what we mean when we say that quasiconcavity
is weaker than concavity. Moreover, as noted previously, monotone transforma-
tions of quasiconcave functions remain quasiconcave, allowing us to use them to
represent ordinal concepts such as utility. From our point of view, looking at
optimization, the important point is that a critical point of many quasiconcave
functions will be a maximum, just as is the case with a concave function. But
such critical points need not exist - and even if they do, they are not necessar-
ily maximizers of the function - consider f(x) = x3. Any strictly increasing
function is quasiconcave and quasiconvex (check this); this function is both
over the compact interval [−1, 1], but the critical point x = 0 is clearly neither
a maximum nor a minimum over that interval. What we usually use these
concepts for is to check that upper contour sets (which can represent demand
correspondences, or sets of optimal strategies in game theory, etc.) are convex.

10 Static Optimization

10.1 Unconstrained Optimization.

We have already stated the first optimization result, the Bolzano-Weierstraß
theorem. Remember, the only property that we assumed8 of f : Rn → R was
continuity and that the theorem, although asserting that a maximum exists
(over a compact set), gave no clue as to how to find it. Differentiability is a
stronger property than continuity; and yes, as it is very often the case in math,
stronger assumptions allow us to come to stronger conclusions. We may indeed
locate optima of f by looking at its derivative (or gradient).
The very definition of differentiability states that locally a differentiable

function is well approximated by a linear function. But optimizing a linear
function is easy: it never reaches an interior maximum or a minimum except if
all its coefficients are zero. That immediately gives us the following necessary
condition:

Theorem 169 (First Order Conditions) If f : Z ⊂ Rn → R reaches its (local)
maximum at some interior point x∗ ∈ intZ (by interior we mean that x∗ belongs

8We do not study oprtimization of more general functions Rn → Rm simply because there
maximum or minimum value is not defined: remember, there is no natural way to order Rm.
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to Z together with a small enough open ball Br(x
∗), for some r > 0) and f is

differentiable at x∗ then Dx∗f = 0 (points at which Df = 0 are called critical
points of f).

Corollary 170 The same result holds if x∗ is instead a local minimum.

This theorem is the theoretical ground behind the mechanical differentiation
used by many college students. Three points should be made about using this
theorem.
First, this theorem gives you a necessary condition which is by no means

sufficient. If a function has a zero gradient at some particular interior point,
than it does not have to be (even a local) maximum or minimum (think about
f(x) = x3 at point 0).
Second, the theorem gives you a necessary condition only for an interior

optimum. If a local optimum is reached by f at a point on the boundary of D,
its gradient does not have to equal zero at this point (think about f(x) = x on
D = [0, 1]). You have to consider boundary points separately.
Third, the theorem tells you nothing about global optima. You have to

employ other (not first order) considerations to figure out at which of the sus-
picious points (which include all critical points of f and all boundary points of
D) the function actually attains a global maximum. Good news is, though, that
typically there will not be too many of those.
That is all there is to say about first order condition and unconstrained

optimization. Again, assuming more structure (in our case, existence of the
second derivative) allows one to come to more definite conclusions.

Theorem 171 (Second Order Conditions) Suppose f is a C2 function on Z ⊂
Rn, and x∗ is an interior point of Z. If f has a local maximum (respectively, min-
imum) at x∗, then Dx∗(f) is zero and Hf (x

∗) is negative (respectively, positive)
semidefinite. Conversely, if Dx∗(f) is zero and Hf (x

∗) is negative (respectively,
positive) definite, then f has a strict local maximum (respectively, minimum) at
x∗.

The above theorem gives almost necessary and sufficient conditions for an
interior optimum. Almost — because no conclusions can be drawn if the Hessian
is semidefinite but not definite.
In the one-dimentional case, the Hessian of f is simply one number: f 00.

Therefore, second order conditions do not give a definite answer for points at
which both the first and second derivatives are zero. A natural next move is
then to consider the third derivative — whether f 000(x∗) 6= 0. If so, then locally
the function looks like x3 around zero, i.e., it is not an optimum. If f 000(x∗) = 0,
then consider the fourth derivative. If f 0000(x0) < 0, then locally f looks like
x4, i.e., x∗ is a local minimum. If f 0000(x∗) > 0, then x∗ is a local maximum. If
f 0000(x∗) = 0, you have to consider further derivatives. Unfortunately, as the last
example shows, this process may never come to the end: you may be evaluating
higher and higher order derivatives and they all may turn out to be zero even
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though the function itself is nonzero around x∗, and you will never find out
whether x∗ is a local maximum, a local minimum, or neither.
Besides working out quadratic forms, there is another simple algorithm for

testing the definiteness of a symmetric matrix like the Hessian. First, we need
some definitions:

Definition 172 Let A be an n× n matrix. A k× k submatrix of A formed by
deleting n−k rows of A, and the same n−k columns of A, is called principal
submatrix of A. The determinant of a principal submatrix of A is called a
principal minor of A.

Note that the definition does not specify which n− k rows and columns to
delete, only that their indices must be the same.

Example 173 For a general 3× 3 matrix,

A =

⎡⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦
there is one third order principal minor, namely |A|. There are three second

order principal minors:¯̄̄̄
a11 a12
a21 a22

¯̄̄̄
, formed by deleting column 3 and row 3;¯̄̄̄

a11 a13
a31 a33

¯̄̄̄
, formed by deleting column 2 and row 2;¯̄̄̄

a22 a23
a32 a33

¯̄̄̄
, formed by deleting column 1 and row 1

And there are three first order principal minors:

¯̄
a11
¯̄
, formed by deleting the last two rows and columns¯̄

a22
¯̄
, formed by deleting the first and third rows and columns¯̄

a33
¯̄
, formed by deleting the first two rows and columns

Definition 174 Let A by an n× n matrix. The kth order principal submatrix
of A obtained by deleting the last n− k rows and columns of A is called the kth
order leading principal submatrix of A, and its determinant is called the kth
order leading principal minor of A.

We will denoted the kth order leading principal submatrix of A by Ak, and
its kth order leading principal minor by |Ak| . Now, the algorithm for testing
the definiteness of a symmetric matrix:

Theorem 175 Let A be an n× n symmetric matrix. Then,
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1. (a) A is positive definite if and only if all its n leading principal minors
are (strictly) positive.

(b) A is negative definite if and only if its n leading princiapl minors
alternate in sign as follows:

|A1| < 0, |A2| > 0, |A3| < 0, etc.

(c) If some kth order leading principal minor of A is nonzero but does
not fit either of the above sign patterns, then A is indefinite.

One particular failure of this algorithm occurs when some leading principal
minor is zero, but the others fit one of the patterns above. In this case, the
matrix is not definite, but may or may not be semidefinite. In this case, we must
unfortunately check not only the principal leading minors, but every principal
minor.

Theorem 176 Let A be an n × n symmetric matrix. Then, A is positive
semidefinite if and only if every principal minor of A is ≥ 0. A is negative
semidefinite if and only if every principal minor of odd order is ≤ 0 and every
principal minor of even order is ≥ 0.

10.2 Equality Constrained Optimization

Suppose we want to maximize (or minimize) a smooth function f(x) : R2 → R
on the set {x ∈ R2 : g(x) = 0}, where g(x) : R2 → R is another smooth function.
By the implicit function theorem, around any point x∗ at which ∇g(x∗) 6= 0
this set looks like a smooth curve and from x∗ we can move along it in either
direction. What would be the first order condition for x∗ if it is a solution to the
optimization problem? Well, if∇f(x∗) is not orthogonal to the curve at x∗, then
x∗ is clearly not an optimum: of the two opposite directions at x∗ one will give
a strictly positive dot product with ∇f and moving in this direction will strictly
(first order) improve the value of f. Therefore, at the optimum it is necessary
that ∇f is orthogonal to the curve. But so is ∇g (at any point). Hence at the
optimum it should be the case that ∇f k ∇g, which implies (provided ∇g 6= 0)
that ∇f(x∗) = λ∇g(x∗).

Exercise 177 Suppose f(x), g1(x), g2(x) : R3 → R are C1 functions and we
want to maximize f(x) subject to g1(x) = g2(x) = 0. Assume that at some
point x∗ in the feasible set ∇g1(x∗) ∦ ∇g2(x) (which means that around x∗ the
feasible set is a smooth curve). Persuade yourself that a necessary condition for
a local optimum is that ∇f(x∗) lie in the span of ∇g1(x∗) and ∇g2(x∗), i.e.,
that ∇f(x∗) = λ1∇g1(x∗) + λ2∇g2(x∗) for some λ1, λ2.

The intuition conveyed by the two above examples is generalized in the
following

Theorem 178 (The Theorem of Lagrange) Let f, gi : Rn → R be C1 functions,
i = 1, ..., k.Suppose x∗ is a local maximum or minimum of f on the set
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Z = U ∩ {x|gi(x) = 0, i = 1, ..., k},

where U ⊂ Rn is open. Suppose also that rank[∇g1(x∗), ....,∇g2(x∗)] = k.

Then, there exist real numbers λ∗1, ..., λ
∗
k such that ∇f(x∗) =

kP
i=1

λ∗i∇gi(x∗).

Note that, similar to unconstrained first order conditions, this theorem gives
only necessary conditions for an optimum, which are by no means sufficient.
For sufficiency one must consider second order conditions, which are messy and
which I am not going to consider here.
The constraint qualification condition (that rank[∇g1(x∗), ....,∇g2(x∗)] = k,

or, equivalently, that gradients of all the constraints at x∗ are linearly indepen-
dent) is important, as the following example suggests: without it the theorem
may fail, i.e., at a local optimum the corresponding λi (which are called La-
grange multipliers) need not exist. However, in all my time in economics I have
never seen such a problem. Therefore it might be optimal timewise to forget
about them and solve the problem using the Lagrange method (discussed in the
next paragraph), unless you are absolute risk averse.

Example 179 Let f, g : R2 → R be given by f(x, y) = −y and g(x, y) = y3−x2.
Show that the maximum of f subject to g = 0 is attained at the origin, but that
the constraint qualification is violated there. Show that the conclusion of the
theorem fails and the required λ does not exist.

Lagrange’s main contribution to the study of constrained optimization was
to associate a function L (called the Lagrangean) with an equality-constrained
optimization problem, in such a way that the problem is then reduced to the
unconstrained optimization of L. Following Lagrange, let us define

L(x1, ..., xn, λ1,..., λn) = f(x1, ..., xn)−
kP
i=1

λigi(x1, ..., xn).

Exercise 180 Deduce from Theorem of Lagrange that if x∗ ∈ Rn is a (local)
optimum of f subject to gi = 0, i = 1, ..., k, then there exists λ

∗ ∈ Rk such that
(x∗, λ∗) is a critical point of L(x, λ).

10.3 Inequality Constrained Optimization

Similar logic applies to the problem of maximizing f(x) subject to inequality
constraints hi(x) ≤ 0. At any point of the feasible set some of the constraints
will be binding (i.e., satisfied with equality) and others will not. For the first
order conditions only binding constraints matter and only their gradients play a
role; this can be captured by allowing only multipliers corresponding to binding
constraints to be nonzero in the first order condition for an optimum.
Consider again the two-dimensional example discussed above. Now we will

maximize f(x) subject to g(x) ≤ 0. In an optimum where the constraint is not
binding the problem locally looks like an unconstrained problem and the first
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order condition will be ∇f = 0. In an optimum where the constraint is binding
(and ∇g 6= 0), by the theorem of Lagrange it must be the case that ∇f = λ∇g
for some λ (note that the case ∇f = 0 also satisfied this condition for λ = 0).
But now we can say more: if λ were negative, we could move slightly from
the prospective maximum in the direction of ∇f , and that will not violate the
constraint (we would be moving in the direction opposite to ∇g, so g would
decrease and hence still remain nonpositive). Therefore, at any local optimum
it must be the case that λ ≥ 0.
The intuition of the example above is summarized by the following

Theorem 181 (The Theorem of Kuhn and Tucker) Let f, hi : Rn → R be C1
functions, i = 1, ..., l. Suppose x∗ is a local maximum of f on the set

Z = U ∩ {x ∈ Rn|hi(x) ≤ 0, i = 1, ..., l},

where U is an open set in Rn.Suppose that all constraints that are binding at x∗
have linearly independent gradients at x∗. Then there exist real numbers
λ∗i , i = 1, ..., l, such that:

• λ∗i ≥ 0 and λ∗ihi(x∗) = 0, i = 1, ..., l

• ∇f(x∗) =
lP

i=1
λ∗ihi(x

∗).

The conditions that λ∗i hi(x
∗) = 0 are called complementary slackness con-

ditions. Essentially they state that nontrivial Lagrange multipliers (λ∗i 6= 0)
may come only with constraints that are binding at x∗ (hi(x∗) = 0). Constraint
qualification is similar to that in the Theorem of Lagrange with the obvious
modification that only gradients of binding constraints count. Again, it is al-
most always safe to ignore them, but generally it is not.

Exercise 182 Consider the consumer’s utility maximization problem: maxu(x1, ..., xn)

subject to xi ≥ 0, i = 1, ..., n and
nP
i=1

pixi ≤ I where p1, ..., pn, I > 0. Show that

the constraint qualification condition is satisfied at any feasible point.

Similar to the equality constraint optimization, one can set up Lagrangean

L(x1, ..., xn, λ1, ..., λk) = f(x1, ..., xn)−
lP

i=1
λihi(x1, ..., xn).

The theorem of Kuhn and Tucker then gives conditions on L that must be
satisfied at a local optimum (x∗, λ∗) :

• ∂L
∂xj

= 0, j = 1, ..., n

• λi
∂L
∂λi

= 0, i = 1, ..., l

• λi ≥ 0, ∂L∂λi ≥ 0, i = 1, ..., l
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The first two of the above conditions constitute n + l equations on n + l
unknowns. Solving this (non-linear) system gives all points (typically, finitely
many) that are candidates for a local maximum.
Unfortunately, there is generally no way of telling ex ante which constraints

will end up binding at the optimum and which will not. For example, if there
are five constraints, there will be 25 = 32 possible combinations of binding
constraints. However, some conclusions will typically follow from the economics:
for instance, if one of the constraints is the budget constraint, one can argue
that it will be binding (you want to use up all your resources).
Finally, let us consider the case of mixed constraints: some gi(x) = 0, i =

1, ..., k, and some hj(x) ≤ 0, i = k + 1, ..., k + l. Combining the Theorem of
Lagrange with the Theorem of Kuhn and Tucker gives the following

Theorem 183 Let f, gi, hj : Rn → R be C1 functions, i = 1, ..., l, j = k +
1, ..., k + l. Suppose x∗ is a local maximum of f on the set

Z = U ∩ {x ∈ Rn|gi(x) = 0, i = 1, ..., k, hj(x) ≤ 0, j = k + 1, ..., k + l},

where U is an open set in Rn.Suppose that all constraints that are binding at
x∗ have linearly independent gradients at x∗.Then there exist real numbers
λ∗i , i = 1, ..., k + l, such that:

• λ∗i ≥ 0 and λ∗ihi(x∗) = 0, i = k + 1, ..., k + l

• ∇f(x∗) =
kP
i=1

λ∗i gi(x
∗) +

k+lP
i=k+1

λ∗ihi(x
∗).
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