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10 Static Optimization I

10.1 Unconstrained Optimization.

We have already stated the first optimization result, the Bolzano-Weierstraß
theorem. Remember, the only property that we assumed9 of f : Rn → R was
continuity and that the theorem, although asserting that a maximum exists
(over a compact set), gave no clue as to how to find it. Differentiability is a
stronger property than continuity; and yes, as it is very often the case in math,
stronger assumptions allow us to come to stronger conclusions. We may indeed
locate optima of f by looking at its derivative (or gradient).
The very definition of differentiability states that locally a differentiable

function is well approximated by a linear function. But optimizing a linear
function is easy: it never reaches an interior maximum or a minimum except if
all its coefficients are zero. That immediately gives us the following necessary
condition:

Theorem 244 (First Order Conditions) If f : Z ⊂ Rn → R reaches its (local)
maximum at some interior point x∗ ∈ intZ (by interior we mean that x∗ belongs
to Z together with a small enough open ball Br(x

∗), for some r > 0) and f is
differentiable at x∗ then Dx∗f = 0 (points at which Df = 0 are called critical
points of f).

Corollary 245 The same result holds if x∗ is instead a local minimum.

This theorem is the theoretical ground behind the mechanical differentiation
used by many college students. Three points should be made about using this
theorem.
First, this theorem gives you a necessary condition which is by no means

sufficient. If a function has a zero gradient at some particular interior point,

9We do not study oprtimization of more general functions Rn → Rm simply because there
maximum or minimum value is not defined: remember, there is no natural way to order Rm.
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than it does not have to be (even a local) maximum or minimum (think about
f(x) = x3 at point 0).
Second, the theorem gives you a necessary condition only for an interior

optimum. If a local optimum is reached by f at a point on the boundary of D,
its gradient does not have to equal zero at this point (think about f(x) = x on
D = [0, 1]). You have to consider boundary points separately.
Third, the theorem tells you nothing about global optima. You have to

employ other (not first order) considerations to figure out at which of the sus-
picious points (which include all critical points of f and all boundary points of
D) the function actually attains a global maximum. Good news is, though, that
typically there will not be too many of those.
That is all there is to say about first order condition and unconstrained

optimization. Again, assuming more structure (in our case, existence of the
second derivative) allows one to come to more definite conclusions.

Theorem 246 (Second Order Conditions) Suppose f is a C2 function on Z ⊂
Rn, and x∗ is an interior point of Z. If f has a local maximum (respectively, min-
imum) at x∗, then Dx∗(f) is zero and Hf (x

∗) is negative (respectively, positive)
semidefinite. Conversely, if Dx∗(f) is zero and Hf (x

∗) is negative (respectively,
positive) definite, then f has a strict local maximum (respectively, minimum) at
x∗.

The above theorem gives almost necessary and sufficient conditions for an
interior optimum. Almost — because no conclusions can be drawn if the Hessian
is semidefinite but not definite.
In the one-dimentional case, the Hessian of f is simply one number: f 00.

Therefore, second order conditions do not give a definite answer for points at
which both the first and second derivatives are zero. A natural next move is
then to consider the third derivative — whether f 000(x∗) 6= 0. If so, then locally
the function looks like x3 around zero, i.e., it is not an optimum. If f 000(x∗) = 0,
then consider the fourth derivative. If f 0000(x0) < 0, then locally f looks like
x4, i.e., x∗ is a local minimum. If f 0000(x∗) > 0, then x∗ is a local maximum. If
f 0000(x∗) = 0, you have to consider further derivatives. Unfortunately, as the last
example shows, this process may never come to the end: you may be evaluating
higher and higher order derivatives and they all may turn out to be zero even
though the function itself is nonzero around x∗, and you will never find out
whether x∗ is a local maximum, a local minimum, or neither.
Besides working out quadratic forms, there is another simple algorithm for

testing the definiteness of a symmetric matrix like the Hessian. First, we need
some definitions:

Definition 247 Let A be an n× n matrix. A k× k submatrix of A formed by
deleting n−k rows of A, and the same n−k columns of A, is called principal
submatrix of A. The determinant of a principal submatrix of A is called a
principal minor of A.

Note that the definition does not specify which n− k rows and columns to
delete, only that their indices must be the same.
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Example 248 For a general 3× 3 matrix,

A =

⎡⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦
there is one third order principal minor, namely |A|. There are three second

order principal minors:¯̄̄̄
a11 a12
a21 a22

¯̄̄̄
, formed by deleting column 3 and row 3;¯̄̄̄

a11 a13
a31 a33

¯̄̄̄
, formed by deleting column 2 and row 2;¯̄̄̄

a22 a23
a32 a33

¯̄̄̄
, formed by deleting column 1 and row 1

And there are three first order principal minors:

¯̄
a11
¯̄
, formed by deleting the last two rows and columns¯̄

a22
¯̄
, formed by deleting the first and third rows and columns¯̄

a33
¯̄
, formed by deleting the first two rows and columns

Definition 249 Let A by an n× n matrix. The kth order principal submatrix
of A obtained by deleting the last n− k rows and columns of A is called the kth
order leading principal submatrix of A, and its determinant is called the kth
order leading principal minor of A.

We will denoted the kth order leading principal submatrix of A by Ak, and
its kth order leading principal minor by |Ak| . Now, the algorithm for testing
the definiteness of a symmetric matrix:

Theorem 250 Let A be an n× n symmetric matrix. Then,

1. (a) A is positive definite if and only if all its n leading principal minors
are (strictly) positive.

(b) A is negative definite if and only if its n leading princiapl minors
alternate in sign as follows:

|A1| < 0, |A2| > 0, |A3| < 0, etc.

(c) If some kth order leading principal minor of A is nonzero but does
not fit either of the above sign patterns, then A is indefinite.

One particular failure of this algorithm occurs when some leading principal
minor is zero, but the others fit one of the patterns above. In this case, the
matrix is not definite, but may or may not be semidefinite. In this case, we must
unfortunately check not only the principal leading minors, but every principal
minor.

82



Theorem 251 Let A be an n × n symmetric matrix. Then, A is positive
semidefinite if and only if every principal minor of A is ≥ 0. A is negative
semidefinite if and only if every principal minor of odd order is ≤ 0 and every
principal minor of even order is ≥ 0.

10.2 Equality Constrained Optimization

Suppose we want to maximize (or minimize) a smooth function f(x) : R2 → R
on the set {x ∈ R2 : g(x) = 0}, where g(x) : R2 → R is another smooth function.
By the implicit function theorem, around any point x∗ at which ∇g(x∗) 6= 0
this set looks like a smooth curve and from x∗ we can move along it in either
direction. What would be the first order condition for x∗ if it is a solution to the
optimization problem? Well, if∇f(x∗) is not orthogonal to the curve at x∗, then
x∗ is clearly not an optimum: of the two opposite directions at x∗ one will give
a strictly positive dot product with ∇f and moving in this direction will strictly
(first order) improve the value of f. Therefore, at the optimum it is necessary
that ∇f is orthogonal to the curve. But so is ∇g (at any point). Hence at the
optimum it should be the case that ∇f k ∇g, which implies (provided ∇g 6= 0)
that ∇f(x∗) = λ∇g(x∗).

Exercise 252 Suppose f(x), g1(x), g2(x) : R3 → R are C1 functions and we
want to maximize f(x) subject to g1(x) = g2(x) = 0. Assume that at some
point x∗ in the feasible set ∇g1(x∗) ∦ ∇g2(x) (which means that around x∗ the
feasible set is a smooth curve). Persuade yourself that a necessary condition for
a local optimum is that ∇f(x∗) lie in the span of ∇g1(x∗) and ∇g2(x∗), i.e.,
that ∇f(x∗) = λ1∇g1(x∗) + λ2∇g2(x∗) for some λ1, λ2.

The intuition conveyed by the two above examples is generalized in the
following

Theorem 253 (The Theorem of Lagrange) Let f, gi : Rn → R be C1 functions,
i = 1, ..., k.Suppose x∗ is a local maximum or minimum of f on the set

Z = U ∩ {x|gi(x) = 0, i = 1, ..., k},

where U ⊂ Rn is open. Suppose also that rank[∇g1(x∗), ....,∇g2(x∗)] = k.

Then, there exist real numbers λ∗1, ..., λ
∗
k such that ∇f(x∗) =

kP
i=1

λ∗i∇gi(x∗).

Note that, similar to unconstrained first order conditions, this theorem gives
only necessary conditions for an optimum, which are by no means sufficient.
For sufficiency one must consider second order conditions, which are messy and
which I am not going to consider here.
The constraint qualification condition (that rank[∇g1(x∗), ....,∇g2(x∗)] = k,

or, equivalently, that gradients of all the constraints at x∗ are linearly indepen-
dent) is important, as the following example suggests: without it the theorem
may fail, i.e., at a local optimum the corresponding λi (which are called La-
grange multipliers) need not exist. However, in all my time in economics I have

83



never seen such a problem. Therefore it might be optimal timewise to forget
about them and solve the problem using the Lagrange method (discussed in the
next paragraph), unless you are absolute risk averse.

Example 254 Let f, g : R2 → R be given by f(x, y) = −y and g(x, y) = y3−x2.
Show that the maximum of f subject to g = 0 is attained at the origin, but that
the constraint qualification is violated there. Show that the conclusion of the
theorem fails and the required λ does not exist.

Lagrange’s main contribution to the study of constrained optimization was
to associate a function L (called the Lagrangean) with an equality-constrained
optimization problem, in such a way that the problem is then reduced to the
unconstrained optimization of L. Following Lagrange, let us define

L(x1, ..., xn, λ1,..., λn) = f(x1, ..., xn)−
kP
i=1

λigi(x1, ..., xn).

Exercise 255 Deduce from Theorem of Lagrange that if x∗ ∈ Rn is a (local)
optimum of f subject to gi = 0, i = 1, ..., k, then there exists λ

∗ ∈ Rk such that
(x∗, λ∗) is a critical point of L(x, λ).

10.2.1 Level Curves and the Theorem of Lagrange

Recall the geometric interpretation of the Implicit Function Theorem: a level
curve F (x, y) = c defines a curve in the plane, and the theorem gives conditions
under which we can think of this curve as defining y as a function of x. The
following restatement of the theorem formalizes this intuition:

Theorem 256 Let (x0, y0) be a point on the locus of points F (x, y) = c in the
plane, where F is a C1 function of two variables. If (∂F/∂y)(x0, y0) 6= 0, then
F (x, y) = c defines a smooth curve around (x0, y0) which can be thought of as
the graph of a C1 function y = f(x). Furthermore, the slope of this curve is

−
∂F
∂x (x0, y0)
∂F
∂y (x0, y0)

. (19)

If (∂F/∂y)(x0, y0) = 0, but (∂F/∂x)(x0, y0) 6= 0, then the Implicit Function
Theorem tells us that the locus of points F (x, y) = c is a smooth curve about
(x0, y0) which we can consider as defining x as a function of y. It also tells
us that the tangent line to the curve at (x0, y0) is parallel to the y-axis, i.e.,
vertical.

If either (∂F/∂y)(x0, y0) 6= 0 or (∂F/∂x)(x0, y0) 6= 0 holds, we call(x0, y0) a
regular point of the function F (x, y); the theorem tells us that if every point
on a particular level set is regular, then that level set defines y as a function of x
(or x as a function of y) everywhere on the curve, and that there is a well-defined
tangent line to each point on the curve.
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