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14 Real Analysis I
We use standard notation A∩B for the intersection of two (or more) sets, A∪B
for union, Ac for complement (i.e., for the set of all elements not in A).

14.1 Relations and Equivalences

For two sets A and B, whose elements can be anything whatsoever, a relation
between two points is a function R : A× B → {0, 1}.We write xRy if points x
and y are in relation R (i.e., R(x, y) = 1).

Example 207 xRy if x1 > y1

Example 208 xRy if x1 = y2

Example 209 xRy if kxk = kyk

As it turns out, there is one fundamental class of relations that is important
in microeconomic theory. These are called equivalence relations or equivalences.

Definition 210 A relation is called equivalence (usually denoted by ∼) if it
satisfies the following three properties:

• x ∼ x (reflexive)

• x ∼ y =⇒ y ∼ x (symmetric)

• x ∼ y & y ∼ z =⇒ x ∼ z (transitive)

Exercise 211 For each of the three examples of relations above, find out
whether it is reflexive, symmetric and transitive.

Exercise 212 Give an example of R that is symmetric but not transitive.
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Equivalence relations are essential for an axiomatic development of the util-
ity function: for a utility function to exist, it is a necessary condition that
relation “xRy if the consumer is indifferent between bundles x and y” be an
equivalence (why?). Although it seems obvious that this relation is indeed an
equivalence, and economic models usually assume that it is, it might not be a
great description of reality. For instance, I am pretty much indifferent between
my welfare now and if I give away a nickel; however, such indifference is surely
not transitive: if I give away a million nickels, I will be significantly worse off.

Definition 213 Let S be a set. An order on S is a relation, denoted by <,
with the following two properties:

1. If x ∈ S and y ∈ S then one and only one of the statements x < y, x = y,
y < x is true.

2. If x, y, z ∈ S, if x < y and y < z, then x < z.

Note that the relation > is transitive, but neither reflexive nor symmetric
(indeed, it is antisymmetric: x > y =⇒ y ≯ x).
It is often convenient to write x > y in place of y < x.
The notation x ≤ y indicates that x < y or x = y, without specifying which

of the two holds. In other words, x ≤ y is the negation of x > y.

14.2 Ordered Sets

Definition 214 An ordered set is a set S for which an order is defined.

Example 215 R is an ordered set, but the set of all n-tuples (i.e., Rn) is not.

Definition 216 Suppose S is an ordered set, and E ⊂ S. If there exists a
β ∈ S such that x ≤ β for ever x ∈ E, we say that E is bounded above, and
call β an upper bound of E.
Lower bounds are defined in the same way, with ≥ in place of ≤ .

Definition 217 Suppose S is an ordered set, E ⊂ S, and E is bounded above.
Suppose there exists an α ∈ S with the following properties:

1. α is an upper bound of E.

2. If γ < α then γ is not an upper bound of E.

Then α is called the least upper bound of E or the supremum of E,
and we write α = supE.
The greatest lower bound, or infimum, of a set E which is bounded below

is defined in the same manner: The statement α = inf E means that α is a
lower bound of E and that no β > α is a lower bound of E.
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Definition 218 An ordered set S is said to have the least-upper-bound prop-
erty if the following is true:
If E ⊂ S, E is not empty, and E is bounded above, then supE exists in S.

Exercise 219 Show that Q does not have the least-upper-bound property.

Theorem 220 Suppose S is an ordered set with the least-upper-bound property,
B ⊂ S, B is not empty, and B is bounded below. Let L be the set of all lower
bounds of B. Then α = supL exists in S, and α = inf B. In particular, inf B
exists in S.
Proof. Since B is bounded below, L is not empty. By the definition of L, we
see that every x ∈ B is an upper bound of L. Thus L is bounded above. Thus,
supL exists in S; call it α.
If γ < α, then γ is not an upper bound of L, so γ /∈ B. It follows that α ≤ x

for every x ∈ B. Thus α ∈ L.
Finally, note that any β > α is not in L, because α is an upper bound for L.
Thus, we have shown that α ∈ L, but that any β > α is not in L. But L is

the set of all lower bounds for B, so α is the greatest lower bound for B. This
means precisely that α = inf B.

14.3 Finite, Countable, and Uncountable Sets(*)

Definition 221 For any positive integer n, let Jn be the set whose elements
are the integers 1, 2, ..., n; let J be the set consisting of all positive integers. For
any set A, we say:

1. A is finite if A ∼ Jn for some n (the empty set is also considered to be
finite).

2. A is infinite if A is not finite.

3. A is countable if A ∼ J.

4. A is uncountable if A is neither finite nor countable.

5. A is at most countable if A is finite or countable.

Note that by convention, countable implies infinite (so, strictly speaking, we
do not say ’countably infinite’, although you will hear this phrase from time to
time).
For two finite sets, we have A ∼ B iff A and B ’have the same number of

elements’. But for infinite sets this notion becomes vague, while the idea of 1-1
correspondence (under which, given a mapping from A to B, the image in B of
x1 ∈ A is distinct from the image in B of x2 ∈ A whenever x1 is distinct from
x2) retains its clarity.
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Example 222 Let A be the set of all integers. Then A is countable. For
consider the following arrangement of the sets A and J:

A : 0, 1,−1, 2,−2, 3,−3, ...
J : 1, 2, 3, 4, 5, 6, 7, ...
We can, in this example, even give an explicit formula for a function f from

J to A which sets up a 1-1 correspondence:

f(n) =

½
n
2 (n even)

−n−1
2 (n odd)

Theorem 223 Every infinite subset of a countable set A is countable.
Proof. Suppose E ⊂ A, and E is infinite. Arrange the elements x of A in a
sequence {xn} of distinct elements. Construct a sequence {nk} as follows:
Let n1 be the smallest postive integer such that xnk ∈ E. Having chosen

n1, ..., nk−1(k = 2, 3, 4, ...), let nk be the smallest integer greater than nk−1 such
that xnk ∈ E.
Then, letting f(k) = xnk(k = 1, 2, 3, ...), we obtain a 1-1 correspondence

between E and J.

One interpretation of the theorem is that countability represents the ’small-
est’ kind of infinity, in that no uncountable set can be a subset of a countable
set.

Theorem 224 Let {En} be a sequence of countable sets, and put

S =
∞[
n=1

En

Then S is countable.
Proof. Let every set En be arranged in a sequence {xnk}, k = 1, 2, 3, ... and
consider the infinite array

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...
... ... ... ...

in which the elements of En form the nth row. The array contains all
elements of S. We can arrange these elements in a sequence as follows:

x11;x21, x12;x31, x22, x13;x41, x32, x23, x14, ...

If any of the sets En have elements in common, these will appear more than
once in the above sequence. Hence there is a subset T of the set of all positive
integers such that S ∼ T , which shows that S is at most countable. Since
E1 ⊂ S, and E1 is infinite, S is also infinite, and thus countable.
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Theorem 225 Let A be a countable set, and let Bn be the set of all n-tuples
(a1, ..., an) where ak ∈ A(k = 1, 2, ..., n) and the elements a1, ..., an need not be
distinct. Then Bn is countable.
Proof. That B1 is countable is evident, since B1 = A. Suppose Bn−1 is
countable (n = 2, 3, 4, ...). The elements of Bn are of the form

(b, a) (b ∈ Bn−1, a ∈ A)

For ever fixed b, the set of pairs (b, a) is equivalent to A, and thus countable.
Thus Bn is the union of a countable set of countable sets; thus, Bn is countable,
and the proof follows by induction on n.

Corollary 226 The set of all rational numbers is countable.
Proof. We apply the previous theorem with n = 2, noting that every rational
number can be written as b/a, where b and a are integers. Since the set of pairs
(b, a) is countable, the set of quotients b/a, and thus the set of rational numbers,
is countable.

14.4 Metrics and Norms(*)

Whenever we are talking about a set of objects in mathematics, it is very com-
mon that we have a feeling about whether two particular objects are ”close” to
each other. What we mean is usually that the distance between them is small.
Although it may be intuitive what the distance between two points is, it is not
always that intuitive in a more general setup: for instance, how would you think
about the distance between two continuous functions on the unit interval? Be-
tween two optimal control problems? Between two economies? Between two
preference relations? Here is how we formalize what a distance means:

Definition 227 A metric space is a set X, whose elements are called points,
such that with every two points x and y belonging to X, there is a real number
d(x, y) associated with these two points, and called the distance from x to y,
which satisfies:

• d(x, y) ≥ 0 (we do not want negative distance),

• d(x, y) = 0 ⇐⇒ x = y (moreover, we want strictly positive distance be-
tween distinct points),

• d(x, y) = d(y, x) (symmetry),

• d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Another related concept is that of a norm. Norm is only defined for a linear
space; here we provide a definition on Rn (note that we never employed linear
structure in our definition of metric).
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Definition 228 A norm of a vector is a function k·k : Rn → R such that
∀x, y ∈ Rn, λ ∈ R :

1. kxk ≥ 0,

2. kxk = 0 iff x = 0,

3. kλxk = |λ| kxk,

4. kx+ yk ≤ kxk+ kyk.

Example 229 kxk =
√
x · x, where x ·x is an inner product, is a norm (why?).

Exercise 230 Show that if kxk is a norm, then d(x, y) defined as d(x, y) =
kx− yk is a metric (it is called the metric, generated by a norm).

Exercise 231 For all four examples of metrics above, find out if there exists a
norm that generates it.
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