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15 Real Analysis II

15.1 Sequences and Limits

The concept of a sequence is very intuitive - just an infinite ordered array of
real numbers (or, more generally, points in Rn) - but is defined in a way that
(at least to me) conceals this intuition.
One point to make here is that a sequence in mathematics is something infi-

nite. In our everyday language, instead, we sometimes use the word ”sequence”
to describe something finite (like ”sequence of events”, for example).

Definition 232 A (finite) number A is called the limit of sequence {an} if
∀ε > 0 ∃N : ∀n > N |an −A| < ε. If such number A exists, the sequence is
said to be convergent.

Our next step is to capture the fact that even a divergent (i.e., noncon-
vergent) sequence can still have ”frequently visited” or ”concentration” points -
points to which infinitely many terms of the sequence are ”close”. This intuition
is captured in

Definition 233 A (finite) number B is called a limit point of {an} if ∀ε > 0
∀N : ∃n > N |an −B| < ε.

Exercise 234 Find all limit points of the sequence in the sequence {an} with
an = (−1)n. Recall that this sequence has no limit..

Exercise 235 The only limit point of a convergent sequence is its limit.

Example 236 The converse does not hold: consider sequence 1, 12 , 2,
1
3 , 3,

1
4 , 4,

1
5 ,

etc. Its only limit point is 0 (why?) but it does not converge to it.

Exercise 237 Define the meaning of ∞ being a limit point of a sequence.
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To be convergent is a strong condition on {an}; to have a limit point is a
weaker condition. The price you have to pay for relaxing this (or any) condition
is that now more points will fit - for example, a sequence can have only one
limit (which adds some desired definitiveness to the concept) but multiple limit
points. What you hope to get in return is that more sequences have limit points
than have limits9 . To make an exact statement we need one more

Definition 238 Sequence {an} is called bounded if ∃C : ∀n |an| < C

Exercise 239 Every convergent sequence is bounded.

Now we are ready for

Theorem 240 (Bolzano-Weierstraß) Every bounded sequence has a limit point.

This theorem is often stated as ’Every bounded sequence has a convergent
subsequence.’ The idea is simple: if a sequence has a limit point, then we
know that no matter how far out into the sequence we get, we always return to
an arbitrarily small neighborhood of the limit point eventually (before possibly
leaving again, and returning, and leaving...). So we can construct an infinite
subsequence, selecting only the points sufficiently close to the limit point, which
in fact converges to the limit point as its limit.

15.2 Cauchy Sequences(*)

The ’Cauchy method’ is often useful in establishing the convergence of a given
sequence, without necessarily defining the limit to which it converges.

Definition 241 A sequence {pn} in a metric space X is said to be a Cauchy
sequence if for every ε > 0 there is an integer N such that d(pn, pm)< if
n ≥ N and m ≥ N .

Theorem 242 Problem 243

1. In any metric space X, every convergent sequence is a Cauchy sequence.

2. In Rk, every Cauchy sequence converges.

Proof.

1. If pn → p and if > 0, there is an integer N such that d(p, pn) < for all
n ≥ N . Hence

d(pn, pm) ≤ d(p, pn) + d(p, pm) < 2

as long as n ≥ N and m ≥ N . Thus {pn} is a Cauchy sequence.
9A similar tradeoff arises in game theory: we can use strictly dominant strategies or Nash

equilibrium as a solution concept; the former is more definite and probably more appealing,
but need not (and in most interesting cases does not) exist; the latter always exists (for finite
games at least) but need not be unique and deserves further justification. Now that, after a
number of years in economics, I have finally learned the fundamental concept of tradeoff, I
am amazed to see in how many instances it is applicable in math.
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2. (Sketch) The full proof requires concepts that we haven’t had time to go
into, but it can be found in Rudin, Theorem 3.11. The idea of the proof is
that if {pn} is Cauchy, then we know that there is an integer N such that
d(pn, pm)< if n ≥ N and m ≥ N . Let n ≥ N , for the N in the hypothe-
sis. Then d(pn, pn+1)< , d(pn+1, pn+2)< , ..., d(pn+i, pn+i+1)< , for all
i ≥ 0. By the triangle inequality, d(pn, pn+i+1)≤

Pi
j=0 d(pn+i, pn+i+1) <

nε. So the sequence is ’converging’ to a ’limit’ of pn. Of course, the ’sketch-
iness’ of this proof arises in the fact that pn is not necessarily the limit of
the sequence, and that we run into trouble with this argument when we
let n go to infinity - but this gives about the right intuition.

15.3 Continuity and Upper/Lower Hemicontinuity(*)

Earlier we presented a number of fixed point theorems, including Brouwer’s:

Theorem 244 (Brouwer’s) Let A be a convex and compact subset of R (or Rn)
and let f : A→ A be a continous function. Then, there exists a fixed point of f
that is a point x ∈ A such that

f (x) = x

We mentioned in passing that a version of this theorem is used to prove the
existence of Nash equilibria in finite games. This version, Kakutani’s, weakens
the conditions of Brouwer’s theorem so that it applies to more games - indeed,
to all finite strategic-form games. ’Finite’ refers to the number of players and
the actions they have to choose from; Glenn will go over this, as well as the
distinction between strategic-form and extensive-form games, in more detail.
He will also discuss how such games are interpreted to fit the conditions of
the theorem. For now, our concern is to achieve an understanding of those
conditions.
Kakutani’s theorem is as follows:

Theorem 245 (Kakutani) Let Σ be a compact, convex, nonempty subset of a
finite-dimensional Euclidean space, and r : Σ⇒ Σ a correspondence from Σ to
Σ which satisfies the following:

1. r(σ) is nonempty for all σ ∈ Σ.

2. r(σ) is convex for all σ ∈ Σ.

3. r(·) has a closed graph.

Then r has a fixed point.

Everything in this theorem is familiar from our previous discussion, with
the exception of the third requirement for r, that it have a closed graph. This
property is also referred to as upper-hemi continuity.
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Definition 246 A compact-valued correspondence g : A⇒ B is upper hemi-
continuous at a if g (a) is nonempty and if, for every sequence an → a and
every sequence {bn} such that bn ∈ g(an) for all n, there exists a convergent
subsequence of {bn} whose limit point b is in g(a).

In words, this says that for every sequence of points in the graph of the
correspondence that converges to some limit, that limit is also in the graph of
the correspondence. This means that we don’t ’lose points’ in our graph at the
limit of a convergent sequence of points in the graph, and important property
for ensuring that we have a fixed point.

There is also a property called lower hemi-continuity:

Definition 247 A correspondence g : A ⇒ B is said to be lower hemi-
continuous at a if g(a) is nonempty and if, for every b ∈ g(a) and every
sequence an → a, there exists N ≥ 1 and a sequence {bn}∞n=N such that bn → b
and bn ∈ g(an) for all n ≥ N .

In words, this says that for every point in the graph of the correspondence,
if there is a sequence in A converging to a point a for which g(a) is nonempty,
then there is also a sequence in B converging to b ∈ g(a), and that every point
bn in that sequence is in the graph of an.
Together, these two give us continuity:

Definition 248 A correspondence g : A ⇒ B is continuous at a ∈ A if it is
both u.h.c and l.h.c. at a.

15.4 Open and Closed Sets

For the rest of the analysis we stick to the Euclidean metric on Rn : d(x, y) =
d2(x, y).

Definition 249 For any x0 ∈ Rn and r > 0 define an open ball Br(x0) = {x ∈
Rn|d(x, x0) < r}.

Exercise 250 What do open balls in R2 and R3 look like? What would they
look like if we fixed another metric (d1 or d∞) instead of d2?

Definition 251 Set A ⊂ Rn is called open if, together with any point x0 ∈ A,
it contains a small enough open ball Bε(x0) for some ε > 0.

Example 252 An open ball is an open set (why?)

Example 253 The half-space {x ∈ Rn : x1 > 0} is open

Exercise 254 The union of any (not necessarily finite) number of open sets is
open; the intersection of two (or any finite number of) open sets is open.

Example 255 Let An = {− 1
n < x < 1

n}. Persuade yourself that An is open for
all n.What is the intersection of all An, n = 1, 2, ...? Show that it is not open.
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Definition 256 A point p is a limit point of a set C if every open ball centered
at p contains a point q 6= p such that q ∈ C.

Definition 257 Set C is called closed if it contains all its limit points.

Lemma 258 A set C is closed if and only if its complement is open.
Proof. First, suppose Cc is open. Let x be a limit point of C. Then every
open ball centered at x contains a point of C, so that x is not an interior point
of Cc. Since Cc is open, this means that x ∈ C. It follows that C is closed.
Second, suppose that C is closed. Choose x ∈ Cc. Then x /∈ C, and x is not

a limit point of C. Hence there exists an open ball Br(x) such that C ∩Br(x)
is empty, which implies Br(x) ⊂ Cc. Thus, x is an interior point of Cc; being
true for all x ∈ Cc, this means that Cc is open.

Example 259 A closed ball Br(x0) = {x ∈ Rn|d(x, x0) ≤ r} is a closed set.

Definition 260 If X is a metric space, if E ⊂ X, and if E0 denotes the set of
all limit points of E in X, then the closure of E is the set E ∪E0.

Exercise 261 Show that empty set ∅ and the entire space Rn are both open and
closed. Persuade yourself that these two are the only sets which are both open
and closed.

Definition 262 A set in Rn is called compact if it is closed and bounded.

This is not the traditional definition of compactness that you will find in a
textbook — in spaces more general than Rn it will not work (that is, in those
spaces there exist closed and bounded sets which will not be compact). However,
in Rn it will work fine: whatever definition of compactness you will ever see, it
will be equivalent to the one above.

15.5 Convexity and Separating Hyperplanes

There is a branch of real analysis which plays a relatively modest role in pure
mathematics, but is an enormously powerful device in economics. It has to do
with the notion of convexity.
Unlike topological concepts such as open, closed and compact sets (which in

principal require very little structure on the space), convexity makes use of a
linear structure.

Definition 263 A convex combination of points x and y in Rn is any point z
that can be expressed as z = αx+ (1− α)y for some real number α ∈ [0, 1].

The set of all convex combinations of two given points is the closed segment
between them.

Definition 264 A set A ⊂ Rn is called convex if, together with any two points
x, y ∈ A it contains all their convex combinations.
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Exercise 265 Show that an intersection of (even infinitely many) convex sets
is convex.

Definition 266 The convex hull, denoted conv(A), of set A is the intersection
of all convex sets that contain A. It is the smallest convex set containing A10

Example 267 An open (or closed) ball is a convex set.

Example 268 The half-space is a convex set.

Definition 269 Let p 6= 0 be a vector in Rn,and let a ∈ R. The set H defined
by H = {x ∈ Rn|p ·x = a} is called a hyperplane in Rn.We denote it by H(p, a).
Hyperplanes in R2 are straight lines, hyperplanes in R3 are usual planes and,

generally, hyperplanes in Rn are spaces of dimension n− 1.
The key result (which is indispensable for the second welfare theorem and a

variety of other economic results) is the following

Theorem 270 (Separating Hyperplane Theorem) Let C be a nonempty convex
set in Rn and let x∗ be a point in Rn that is not in C. Then there exists a
hyperplane H(p, a) that separates C and x∗, i.e., such that p · y ≤ a for all
y ∈ C and p · x∗ ≥ a.

Exercise 271 Nonstrict inequalities (≤ and ≥) are essential and can not, in
general, be replaced by strict inequalities (< and >). Construct an example of
a convex set and a point outside it that can not be strictly separated.

A slightly more general result is

Theorem 272 Let C1 and C2 be two disjoint (i.e., C1∩C2 = ∅) convex sets in
Rn. Then there exists a hyperplane H(p, a) that separates C1and C2, i.e., such
that ∀x ∈ C1 p · x ≤ a and ∀y ∈ C2 p · y ≥ a.

Example 273 Any point on the contract curve in the Edgeworth box is a Wal-
rasian equilibrium with an appropriate price vector, as soon as preferences are
concave.

Example 274 The optimal (from the central planning standpoint) production/consumption
choice in a Robinson Crusoe economy can be supported as a decentralized equi-
librium, as long as the production possibility set is convex and preferences are
concave.

Finally, here is alternative definition of convex/concave functions whose for-
mulation is closer to the way we defined quasiconvexity/concavity:

Definition 275 Let C ⊂ Rn be a convex set. A function f : C → R is called
convex, if its epigraph epi(f) = {(x, y) ∈ C × R|f(x) ≤ y} is a convex set. A
function g : C → R is concave if its subgraph sub(f) = {(x, y) ∈ C×R|f(x) ≥ y}
is a convex set.

10Likewise, since the intersection of any number of closed sets is closed, we can define the
closure of set A as the intersection of all closed sets containing A, which will then be the
smallest closed superset of A. However, it is straightforward to see that, in general, there will
be no such thing as the smallest open set containg A (think, for example, of A = {0}).
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