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Recall the geometric interpretation of the Implicit Function Theorem:
a level curve F (x, y) = c defines a curve in the plane, and the theorem
gives conditions under which we can think of this curve as defining y as
a function of x. The following restatement of the theorem formalizes
this intuition:

Theorem 1 Let (x0, y0) be a point on the locus of points F (x, y) = c in
the plane, where F is a C1 function of two variables. If (∂F/∂y)(x0, y0) 6=
0, then F (x, y) = c defines a smooth curve around (x0, y0) which can be
thought of as the graph of a C1 function y = f(x). Furthermore, the
slope of this curve is

−
∂F
∂x
(x0, y0)

∂F
∂y
(x0, y0)

. (1)

If (∂F/∂y)(x0, y0) = 0, but (∂F/∂x)(x0, y0) 6= 0, then the Implicit
Function Theorem tells us that the locus of points F (x, y) = c is a smooth
curve about (x0, y0) which we can consider as defining x as a function of
y. It also tells us that the tangent line to the curve at (x0, y0) is parallel
to the y-axis, i.e., vertical.

If either (∂F/∂y)(x0, y0) 6= 0 or (∂F/∂x)(x0, y0) 6= 0 holds, we
call(x0, y0) a regular point of the function F (x, y); the theorem tells
us that if every point on a particular level set is regular, then that level
set defines y as a function of x (or x as a function of y) everywhere on
the curve, and that there is a well-defined tangent line to each point on
the curve.
(Digression: think about what it would mean if neither of these

conditions held. It would mean that from a particular point, a small
change in x or y would not change the value of F ; that is, you wouldn’t
leave the level set. In this case, the level set, at least at this point, is
not a curve in the plane at all!)
One application of the theorem is an alternative proof for the theorem

of Lagrange. Previously we argued that the Lagrangian method is
rooted in the fact that at an optimum, the gradient vectors of the level
sets of the objective function and of the constraint function must be
parallel. We can make essentially the same argument by observing that
because these two level sets must be tangent at an optimum (why?), their
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slopes must be equal. If the objective function is F and the equality
constraint is G, this implies

−
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= λ (2)

which can be rearranged to give
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and the theorem of Lagrange follows from this intuition (with a few
more details filled in to cover more than two dimensions, multiple con-
straints - if you’re interested, Simon and Blume 19.6 gives the full proof,
which relies heavily on the Implicit Function Theorem; it can be argued
that the IFT’s primary importance is not so much as an optimization
tool, but as a foundational lemma for the proofs of the tools that we do
use).
Notice, by the way, that this argument gives us another piece of

intuition for the rank condition in the theorem of Lagrange (that the
gradient vectors of the constraints need to be linearly independent at
an optimum for the Lagrange method to work). We can only use the
argument above if (x∗, y∗) is a regular point; otherwise (2) is not well-
defined. Previously we said that a regular point is one at which a
well-defined tangent exists, and we clearly need this to be the case to
set up the Lagrangian method as we have. But now, in addition, we
note that at a non-regular point, the gradient of G = [0, 0], a failure
of the rank condition. Unfortunately, this intuition isn’t quite robust
to multiple constraints, for the reason we noted in class - with multiple
constraints the level sets need not be tangent.
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