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The Solow model is one of the basic building blocks of the Neoclas-
sical Growth Model. Abstracting away from decentralized markets and
questions of optimization, the dictatorial model presented here provides
insights into how an economy grows given its choice between consump-
tion and saving.

1 The Model

The model uses discrete time (period t = 0, 1, 2, ...), and the economy is
closed. There is one good produced, which can be consumed or invested
into the capital stock. There are two factors of production, capital and
labor, but we will be focusing on the role of capital by assuming that
labor is inelastically supplied (thus, no questions of wage determination
or the choice between labor and leisure will arise). We have the following
notation:

• Lt = labor supply at time t

• Kt = capital supply at time t

• Yt = output at time t

• Ct = consumption at time t

• It = investment at time t

• s = the savings rate, exogenously determined by the social planner.
Each period, a fraction s of output is invested, and the rest is
consumed, disappearing from the economy.

• Lowercase letters will refer to per capita measures. Thus, we have
kt = Kt/Lt, yt = Yt/Lt, ct = Ct/Lt, it = It/Lt.

Output is generated as a function of capital and labor:

Yt = F (Kt, Lt), F : R2+ → R+, F is continuous and twice differentiable

Note that output depends on t only through Kt and Lt; F itself is
not a function of time. We will assume that F is neoclassical, that is,
that it satisfies the following assumptions:

1. F (µK, µL) = µF (K,L) (F is homogenous of degree one, or ex-
hibits constant returns to scale)
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2. FK > 0, FL > 0, FKK < 0, FLL < 0

3. limK→0 Fk = limL→0 FL =∞; limK→∞ FK = limL→∞ FL = 0

Note that CRS implies, by Euler’s Theorem, that

1. Y = FKK + FLL (product exhaustion), or, dividing through by
output,

2. 1 = εK + εL (the elasticities of output with respect to each factor
of production sum to one).

Example 1 The Cobb-Douglass production function F (K,L) =
KαL1−α is neoclassical. Note that εK = α and εL = 1− α.

Note also that the assumptions we have made imply that capital and
labor are complements:

F (K,L)=FKK + FLL; taking the derivative with respect to L,

FL=FKLK + FLLL+ FL

−FLLL=FKLK

which implies that FKL > 0.
We will find it convenient to deal in per-capita terms, to focus more

explicitly on the role of capital in the economy. To this end, we define

y =
1

L
F (K,L) = F (k, 1) ≡ f(k)

We will need to refer to the derivatives of F in terms of f . We have:

FK(K,L)=FK(k, 1) ≡ f 0(k) because FK is homogenous of degree zero

FL(K,L)=
∂

∂L
Lf(

K

L
)

= f(k)− K

L2
f 0(k)L

= f(k)− kf 0(k)

By the definition of F and f , we have the following other properties
of f :

• f(0) = 0

• f 0 (k) > 0 > f 00(k)

• limk→∞ f 0(k) = 0, limk→0 f
0(k) =∞
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2 Dynamics

Our aim is to look at how the economy changes over time in this model.
We begin by simply writing out our assumptions about how things move.

1. The Resource Constraint: ct + it ≤ yt

Note that this says only what’s happening to today’s output. If
there is an existing stock of capital, then it is possible to consume
today more than is produced today by eating into the capital stock;
this would be negative investment.

2. Population growth: the population grows at the rate n ≥ 0
Thus, Lt = (1 + n)Lt−1 = (1 + n)tL0, where L0 is the initial
populaiton. We normalize this to one, so that Lt = (1 + n)t.

3. The law of motion for capital: In aggregate terms, Kt+1 = (1 −
δ)Kt + It, where δ is the rate of physical depreciation. Dividing
through by Lt (and noting that Lt =

Lt+1
(1+n)

), we can express this in
per capita terms as

(1 + n)kt+1 = (1− δ)kt + it

When kt ≈ kt+1, i.e. near a ’steady state’ (which is where we’ll be
focusing), this can be approximated by

kt+1 ≈ (1− δ − n)kt + it

from which we see that we can think of δ + n as an ’effective rate
of depreciation’ which takes into account not only the effect of
physical depreciation but also of population growth on the per-
capita capital stock.

We want to describe the dynamics of the economy in terms of capital
and consumption, and ultimately, because consumption is pinned down
for us by the social planner, as a function of capital alone. To this end,
we combine the resource constraint and the law of motion for capital to
get

kt+1 − kt= f(kt)− (δ + n)kt − ct (1)

ct=(1− s)f(kt) (2)

The second equation simply links consumption and capital via the
savings rate. Combining the two, we get the fundamental equation of
the Solow model:

kt+1 − kt = sf(kt)− (δ + n)kt (3)
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This simply says that the change in capital is equal to what is saved
out of current output, less depreciation to the current capital stock.
We will find it convenient in examining dynamics to rewrite this

equation as an expression of the growth rate of capital. Define γ(kt) =
kt+1−kt

kt
and φ(k) = f(k)

k
. Then we can rewrite (3) as

γ(k) = sφ(k)− (δ + n) (4)

Note that this equation is stationary; γ(·) depends on time only
through the subscript on kt; here we are expressing the dynamics of the
Solow model in terms of the capital stock only, as well as the parameters
of the model, irrespective of the time period.

3 Steady State

We are interested in:

• whether or not the economy ever comes to a steady state - defined
as any k∗ such that if ks = k∗, kt = k∗∀t ≥ s

• if so, how the economy arrives there, and

• whether the steady state is stable, in the sense that if we begin at
steady state and then perturb the economy slightly, the economy
will return to the steady state.

One steady state is the trivial one at which c = k = 0. We are more
interested in some non-zero steady state, at which, by definition,

γ(k∗)= sφ(k∗)− (δ + n) = 0, or, equivalently,

φ(k∗)=
δ + n

s
(5)

Let’s look at this second equation more carefully (drawing pictures
will help). Consider the function φ(k). Its definition and the properties
of f tell us that it is continuous and twice differentiable. Moreover, we
have

φ0(k) =
∂

∂k

f(k)

k
=

f 0(k)

k
− f(k)

k2
=

kf 0(k)− f(k)

k2
= −FL

k2
< 0

so that we know that φ(k) is decreasing. Additionally, by L’Hopital’s
rule we know that φ(0) = f 0(0) = ∞ and φ(∞) = f 0(∞) = 0. We
therefore have a decreasing function mapping the positive reals onto the
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positive reals, and the (5) has a unique solution iff δ+n
s
is positive. This

gives us our steady state:

φ(k∗)=
δ + n

s
, so

k∗=φ−1(
δ + n

s
), φ−1 also decreasing

Note that:

• γ(k∗) = 0; φ(k) decreasing tells us that γ(k) > 0 for k < k∗ and
γ(k) > 0 for k > k∗. Thus, the steady state is not just locally but
globally stable.

• φ−1 decreasing tells us that k∗ is decreasing in δ and n and increas-
ing in s

• However, c∗ = (1−s)f(k∗), so while c∗ is unambiguously decreasing
in δ and n, s has an ambiguous effect on steady-state consumption
(the relationship turns out to be quadratic).

• φ(k) decreasing also tells us that γ(k) is monotonically decreasing
in k. Thus, when k is below steady state the economy grows at a
rate which is decreasing to the steady state, and conversely when
k is above steady state the economy contracts at a rate which is
decreasing to the steady state.

Let us prove more precisely that there is a stable steady state, that
the economy will converge to it from any initial level of capital, and that
it will do so at a monotonically decreasing rate.
To this end, define G(k) = sf(k) + (1 − δ − n)k; note that G(k)

represents ’tomorrow’s’ capital stock given that capital ’today’ is equal
to k. Assuming that the effective rate of depreciation is less than one,
we have

G0(k)= sf 0(k) + 1− δ − n > 0

G00(k)= sf 00(k) < 0

So G is increasing and concave. Moreover,

G(0)=0, G0(0) =∞
G(∞)=∞, G0(∞) = 1− δ − n < 1

G(k∗)= k∗

Again, a picture helps with intuition. We have an increasing and
concave function which begins at the origin and whose slope asymptotes
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to something positive but less than one. This tells us that G(k) > k for
all k < k∗ and G(k) < k for all k > k∗; i.e., the fixed point G(k∗) = k∗

is the unique fixed point (other than the origin itself).
Now, consider a sequence {kt}∞t=0, k0 ∈ (0, k∗). We know that in

this sequence, for every t, kt < kt+1 < k∗, that is, the sequence is
monotonically increasing and bounded above by k∗. It must, therefore,
converge to some bk ≤ k∗. But the fact that G(k) is continuous means
that G(bk) = bk (more precisely, G(bk) can be made arbitrarily close to bk).
That is, bk is a fixed point of G. But we just saw that k∗ is the unique
fixed point of G; thus, bk = k∗. We have thus shown that for any initial
k0 ∈ (0, k∗), the sequence {kt}∞t=0 will converge to k∗. A symmetric
argument shows that for any k0 ∈ (k∗,∞), the sequence {kt}∞t=0 will
converge to k∗ from above. This shows that the steady state is indeed
stable and that the economy will converge to it from any initial level of
capital.
To see that the rate at which it does so is monotonically decreasing

at the steady state is approached, note the following:

γ(k)= sφ(k)− (δ + n)

γ(k∗)= 0

γ(k)> 0 if k < k∗ and γ(k) < 0 if k > k∗

γ0(k)= sφ0(k) < 0

Putting these together gives us

γ(kt)>γ(kt+1) > γ(k∗) = 0 if kt ∈ (0, k∗)
γ(kt)<γ(kt+1) < γ(k∗) = 0 if kt ∈ (k∗,∞)

which is what we wanted to prove: capital grows to the steady state
at a decreasingly positive rate from below, and contracts at a decreas-
ingly negative rate from above.

4 Continuous Time Dynamics with Log-Linearization

Finally, we can see the same aspects of the Solow model in continuous
time using a technique called log-linearization. To do this, we first
rewrite the dynamics of the Solow model in continuous time:

γ(k) =
(dk/dt)

k
≡

·
k

k
= sφ(k)− (δ + n) (6)

Now, we define a new variable z = log k− log k∗. Note that this is a
’function’ of k, with k∗ being a constant, and that z = 0 precisely when
k = k∗. So we have

k = k∗ez (7)
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and
·
k =

dk

dt
=

dk∗ez

dt
= k∗ez

dz

dt
= k

·
z (8)

or
·
z =

·
k

k
(9)

Moreover, we can express γ(k) in terms of z :

sφ(k)− (δ + n) = sφ(k∗ez)− (δ + n) ≡ Γ(z) (10)

So that combining (6), (9), and (10), we have
·
z = Γ(z) (11)

Now, as we said, z = 0 precisely when k = k∗. We can therefore use
a linear approximation of (11) about 0 to understand the dynamics of the
system in z, and because this approximation will be about a steady state
it will be quite accurate (i.e., neither the definition of z nor the choice to
take a Taylor expansion about 0 is arbitrary). This approximation will
in turn help us to understand the dynamics of the system in k, which is
our main interest.
First, let us understand a bit more the function Γ(z). We have:

Γ(z) defined for all z ∈ R (12)

Γ(0)= sφ(k∗)− (δ + n) = 0 (13)

Γ(z)> 0∀z < 0,Γ(z) > 0∀z > 0 (14)

Γ0(z)= sφ0(k∗ez)k∗ez (15)

and in this last equation it is helpful to note that

φ0(k) =
kf 0(k)− f(k)

k2
= −

∙
1− f 0(k)k

f(k)

¸
f(k)

k2
= −(1− εk)

f(k)

k2
(16)

Now we are ready to take a Taylor expansion of Γ(z) about 0 :

Γ(z)=Γ(0) + Γ0(0)z (17)

=Γ0(0)z (using (13)) (18)

which, using (15) and (16), gives us

Γ(z)= sφ0(k∗)k∗z (19)

=−s(1− εk)
f(k∗)

k∗2
k∗z (20)

=−sf(k
∗)

k∗
(1− εk)z (21)

=−(δ + n)(1− εk)z (using (13) once again) (22)

≡λz, where λ < 0 (23)
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Recalling that z = log k − log k∗ and ·
z =

·
k
k
, this gives us the system

in k:
·
k

k
= λ log(

k

k∗
), λ < 0 (24)

which simply tells us what we had already learned from the discrete
time model. The growth rate of capital is monotonically decreasing in
the capital stock; it is 0 when k = k∗. Again, this tells us that the
system has a stable steady state at k∗.
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