14.102 Problem Set 1

Due Thursday, September 23, 2004, in class

1. Let $A=\left(\begin{array}{ccc}4 & 1 & -2 \\ 2 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & 1 \\ -3 & 0 \\ 1 & 1\end{array}\right)$
(a) Find $C=A B$
(b) Find rank C
(c) Find $\operatorname{det} C$
(d) Find $D=B A$
(e) Find rank D
(f) Find $\operatorname{det} D$
(g) Is C invertible? If so, find C^{-1}
(h) Is D invertible? If so, find D^{-1}
(i) Find eigenvalues of C
(j) Solve the following two linear systems (Hint: you will need no extra calculations!):
i. $\left\{\begin{array}{l}3 x+2 y=1 \\ 5 x+3 y=0\end{array}\right.$
ii. $\left\{\begin{array}{l}3 u+2 v=0 \\ 5 u+3 v=1\end{array}\right.$
2. Lecture Notes Exercise 13: Given an $m \times n$ matrix A, show that $S(B) \subseteq$ $S(A)$ and $N\left(A^{\prime}\right) \subseteq N\left(B^{\prime}\right)$ whenever $B=A X$ for some matrix X. What is the geometric interpretation?
3. Lecture Notes Exercise 19/Lemma 20: Suppose $\left\{e_{j}\right\}$ is a basis for \mathbb{X}; let $P=\left[p_{i j}\right]$ be any nonsingular $n \times n$ matrix, and let $f_{j}=\sum_{i} p_{i j} e_{i}$. Show then that $\left\{f_{j}\right\}$ is a basis for \mathbb{X} as well.
4. For a square matrix A assume that all elements of both A and A^{-1} are integers. What values can $\operatorname{det} A$ take?
5. Lecture Notes Exercise 36: Using the properties of transpose and inverse:
(a) Prove that $A^{-k}=\left(A^{k}\right)^{-1}$
(b) Consider the matrix $Z=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ where X is an arbitrary $m \times n$ matrix. Under what conditions on X is Z well-defined? Show that Z is symmetric. Also show that $Z Z=Z$ (i.e., that Z is idempotent).
6. Lecture Notes Exercise 42: Show that for a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & \beta \\
\gamma & \delta
\end{array}\right]
$$

provided $|A|=\alpha \delta-\beta \gamma \neq 0$, the inverse is

$$
A^{-1}=\frac{1}{\alpha \delta-\beta \gamma}\left[\begin{array}{ll}
\delta & -\beta \\
-\gamma & \alpha
\end{array}\right]
$$

7. Lecture Notes Exercise 49: Prove the claim made in the lecture notes that if we can find as many as k linearly independent solutions x^{1}, \ldots, x^{k} to $A x=0$, then any $z \in S\left[x^{1}, \ldots, x^{k}\right]$ is a solution as well. That is, prove that $A x^{1}=A x^{2}=0 \Rightarrow A z=0 \forall z \in S\left[x^{1}, x^{2}\right]$.
8. Lecture Notes Exercise 55: Show that $n u l l[A, b]=1$ if and only if $\operatorname{rank}[A, b]=\operatorname{rank}(A)$.
9. (Harder - for extra credit). Let

$$
d_{n}=\operatorname{det}\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & \ldots & \ldots & 0 \\
-1 & 1 & 1 & 0 & \ldots & \ldots & 0 \\
0 & -1 & 1 & 1 & \ldots & \ldots & 0 \\
0 & 0 & -1 & 1 & \ldots & \ldots & 0 \\
0 & 0 & 0 & -1 & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & 1 \\
0 & 0 & 0 & 0 & \ldots & -1 & 1
\end{array}\right)
$$

This is an $n \times n$ matrix with ones on and right above the diagonal, negative ones right below the diagonal and zeros elsewhere.

Show that d_{n} is equal to the $(n+1)$ th term of the Fibonacci sequence.

