14.102 Problem Set 1

Due Thursday, September 23, 2004, in class

1. Let
$$A = \begin{pmatrix} 4 & 1 & -2 \\ 2 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 1 \\ -3 & 0 \\ 1 & 1 \end{pmatrix}$

- (a) Find C = AB
- (b) Find rank C
- (c) Find det C
- (d) Find D = BA
- (e) Find rank D
- (f) Find det D
- (g) Is C invertible? If so, find C^{-1}
- (h) Is D invertible? If so, find D^{-1}
- (i) Find eigenvalues of C
- (j) Solve the following two linear systems (Hint: you will need no extra calculations!):

i.
$$\begin{cases} 3x + 2y = 1\\ 5x + 3y = 0 \end{cases}$$

ii.
$$\begin{cases} 3u + 2v = 0\\ 5u + 3v = 1 \end{cases}$$

- 2. Lecture Notes Exercise 13: Given an $m \times n$ matrix A, show that $S(B) \subseteq S(A)$ and $N(A') \subseteq N(B')$ whenever B = AX for some matrix X. What is the geometric interpretation?
- 3. Lecture Notes Exercise 19/Lemma 20: Suppose $\{e_j\}$ is a basis for \mathbb{X} ; let $P = [p_{ij}]$ be any nonsingular $n \times n$ matrix, and let $f_j = \sum_i p_{ij} e_i$. Show then that $\{f_j\}$ is a basis for \mathbb{X} as well.
- 4. For a square matrix A assume that all elements of both A and A^{-1} are integers. What values can det A take?
- 5. Lecture Notes Exercise 36: Using the properties of transpose and inverse:
 - (a) Prove that $A^{-k} = (A^k)^{-1}$
 - (b) Consider the matrix $Z = X(X'X)^{-1}X'$ where X is an arbitrary $m \times n$ matrix. Under what conditions on X is Z well-defined? Show that Z is symmetric. Also show that ZZ = Z (i.e., that Z is **idempotent**).

6. Lecture Notes Exercise 42: Show that for a 2×2 matrix

$$A = \left[\begin{array}{cc} a & \beta \\ \gamma & \delta \end{array} \right]$$

provided $|A| = \alpha \delta - \beta \gamma \neq 0$, the inverse is

$$A^{-1} = \frac{1}{\alpha \delta - \beta \gamma} \left[\begin{array}{cc} \delta & -\beta \\ -\gamma & \alpha \end{array} \right]$$

- 7. Lecture Notes Exercise 49: Prove the claim made in the lecture notes that if we can find as many as k linearly independent solutions $x^1, ..., x^k$ to Ax = 0, then any $z \in S[x^1, ..., x^k]$ is a solution as well. That is, prove that $Ax^1 = Ax^2 = 0 \Rightarrow Az = 0 \forall z \in S[x^1, x^2]$.
- 8. Lecture Notes Exercise 55: Show that null[A, b] = 1 if and only if rank[A, b] = rank(A).
- 9. (Harder for extra credit). Let

$$d_n = \det \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & \dots & 0 \\ -1 & 1 & 1 & 0 & \dots & \dots & 0 \\ 0 & -1 & 1 & 1 & \dots & \dots & 0 \\ 0 & 0 & -1 & 1 & \dots & \dots & 0 \\ 0 & 0 & 0 & -1 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{pmatrix}$$

This is an $n \times n$ matrix with ones on and right above the diagonal, negative ones right below the diagonal and zeros elsewhere.

Show that d_n is equal to the (n+1)th term of the Fibonacci sequence.