14.102 Problem Set 1 Solutions

1. Let $A=\left(\begin{array}{ccc}4 & 1 & -2 \\ 2 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & 1 \\ -3 & 0 \\ 1 & 1\end{array}\right)$
(a) Find $C=A B$

Solution: $C=\left(\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right)$
(b) Find rank C

Solution: 2
(c) Find $\operatorname{det} C$

Solution: -1
(d) Find $D=B A$

Solution: $\quad D=\left(\begin{array}{ccc}10 & 2 & -3 \\ -12 & -3 & 6 \\ 6 & 1 & -1\end{array}\right)$
(e) Find rank D

Solution: Any two columns of D are linearly independent, so rank D is at least 2 . On the other hand, it can not be above 2 , since rank of the product is no greater than rank of each of the matrices being multiplied (why?). So $\operatorname{rank} D=2$
(f) Find $\operatorname{det} D$

Solution: 0, since D is not full rank.
(g) Is C invertible? If so, find C^{-1}

Solution: Yes, $C^{-1}=\left(\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right)$
(h) Is D invertible? If so, find D^{-1}

Solution: No, since $\operatorname{det} D=0$.
(i) Find eigenvalues of C

Solution: We have to solve $\left|\begin{array}{cc}3-\lambda & 2 \\ 5 & 3-\lambda\end{array}\right|=0 \Longleftrightarrow(3-\lambda)^{2}=$ $10 \Longleftrightarrow 3-\lambda= \pm \sqrt{10} \Longleftrightarrow \lambda=3 \pm \sqrt{10}$
(j) Solve the following two linear systems (Hint: you will need no extra calculations!):
i. $\left\{\begin{array}{l}3 x+2 y=1 \\ 5 x+3 y=0\end{array}\right.$
ii. $\left\{\begin{array}{l}3 u+2 v=0 \\ 5 u+3 v=1\end{array}\right.$

Solution: We have $C\left(\begin{array}{ll}x & u \\ y & v\end{array}\right)=I \Longleftrightarrow\left(\begin{array}{ll}x & u \\ y & v\end{array}\right)=C^{-1}=$ $\left(\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right)$
2. Lecture Notes Exercise 13: Given an $m \times n$ matrix A, show that $S(B) \subseteq$ $S(A)$ and $N\left(A^{\prime}\right) \subseteq N\left(B^{\prime}\right)$ whenever $B=A X$ for some matrix X. What is the geometric interpretation?
Solution: Suppose X is $n \times l$. Then B is $m \times l$. We have $S(A)=\{y \in$ $\mathbb{R}^{m} \mid y=A x$ for some $\left.x \in \mathbb{R}^{n}\right\}$, and $S(B)=\left\{y \in \mathbb{R}^{m} \mid y=B x\right.$ for some $\left.x \in \mathbb{R}^{l}\right\}$. We want to show that any $y \in S(B)$ belongs to $S(A)$ as well. We have $y=B x=A X x=A z$, where $z=X x, z \in \mathbb{R}^{n}$, implying that $y \in S(B) \Longrightarrow y \in S(A)$.

For the second part, recall that $N\left(A^{\prime}\right)=\left\{x \in R^{m} \mid A^{\prime} x=0\right\}$, and $N\left(B^{\prime}\right)=$ $\left\{x \in R^{m} \mid B^{\prime} x=0\right\}$. We want to show that $x \in N\left(A^{\prime}\right) \Rightarrow x \in N\left(B^{\prime}\right)$, and the proof is similar to the previous part: if $A^{\prime} x=0$, then we have $B^{\prime} x=X^{\prime} A^{\prime} x=0$.
3. Lecture Notes Exercise 19/Lemma 20: Suppose $\left\{e_{j}\right\}$ is a basis for \mathbb{X}; let $P=\left[p_{i j}\right]$ be any nonsingular $n \times n$ matrix, and let $f_{j}=\sum_{i} p_{i j} e_{i}$. Show then that $\left\{f_{j}\right\}$ is a basis for \mathbb{X} as well.

Solution: As noted in the lecture notes, this is equivalent to saying that if the matrix E, with columns consisting of the vectors $\left\{e_{j}\right\}$, is a basis for \mathbb{X}, then $F=E P$ is a basis for \mathbb{X} as well. Note that since P is nonsingular, we can write $E=F P^{-1}$. First let us show that F spans \mathbb{X}. This is equivalent to saying that any $x \in \mathbb{X}$ can be written as $x=F c$, where c are the coordinates of x under the basis F. We already know that E is a basis for \mathbb{X}. So for any $x \in \mathbb{X}$, we can write $x=E d=F P^{-1} d=F c$, as desired. $\quad c=P^{-1} d$, the coordinates of x under the basis F, is simply the product of the inverted projection matrix P^{-1} and d, the coordinates of x under the basis E.

What is meant by 'projection matrix'? That is, what is the role of matrix P above? Notice that $F=E P$ or $f_{j}=E p_{j}$ means that p_{j} 's are the coordinates of f_{j} 's under the basis E. Thus, if c are the coordinates of x under $E, P c$ are its coordinates under F. This all means that the transformation $c \mapsto P c$ for $P=E^{-1} F$ just gives the new coordinates on basis E given initial coordinates under basis F. And indeed P is just the projection of F on E. We used the inverted projection matrix above because we were going the other way: given initial basis E, we were looking for the coordinates of x under the new basis F.
What remains to be shown is that the columns of F are linearly independent. But this is immediate. One way to see it is that since P is nonsingular, the dimensions of F are the same as the dimensions of E

- so if F spans \mathbb{X}, its columns must be linearly independent. Another approach is to note that F is invertible: $F^{-1}=P^{-1} E^{-1}$.

4. For a square matrix A assume that all elements of both A and A^{-1} are integers. What values can $\operatorname{det} A$ take?

Solution: If all elements of a matrix are integers, then so is its determinant. We have two integers, $\operatorname{det} A$ and $\operatorname{det}\left(A^{-1}\right)$, whose product is equal to $\operatorname{det} I=1$. The only two possibilities are $\operatorname{det} A=1$ and $\operatorname{det} A=-1$.
5. Lecture Notes Exercise 36: Using the properties of transpose and inverse:
(a) Prove that $A^{-k}=\left(A^{k}\right)^{-1}$

Solution: $\quad A^{-k}=\left(A^{-1}\right)^{k}=A^{-1} A^{-1} \cdots A^{-1}(\mathrm{k}$ times $)=\left(A^{k}\right)^{-1}$ by the property that $(A B)^{-1}=B^{-1} A^{-1}$.
(b) Consider the matrix $Z=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ where X is an arbitrary $m \times n$ matrix. Under what conditions on X is Z well-defined? Show that Z is symmetric. Also show that $Z Z=Z$ (i.e., that Z is idempotent).
Solution: $\left(X^{\prime} X\right)$ must be invertible. This can only be the case if $n<m$ (why?) and if $\operatorname{rank} X=n$.
To show that Z is symmetric, note that $\left(X^{\prime} X\right)$ is symmetric, and hence so is $\left(X^{\prime} X\right)^{-1}$ (why?). Now $Z^{\prime}=\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=X^{\prime \prime}\left(X^{\prime} X\right)^{-1 \prime} X^{\prime}=$ $X\left(X^{\prime} X\right)^{-1} X^{\prime}=Z$.
To show that Z is idempotent, we check that $Z Z=\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=$ $X\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-1} X^{\prime}=X\left(X^{\prime} X\right)^{-1} I X^{\prime}=X\left(X^{\prime} X\right)^{-1} X=$ Z.
6. Lecture Notes Exercise 42: Show that for a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & \beta \\
\gamma & \delta
\end{array}\right]
$$

provided $|A|=\alpha \delta-\beta \gamma \neq 0$, the inverse is

$$
A^{-1}=\frac{1}{\alpha \delta-\beta \gamma}\left[\begin{array}{cc}
\delta & -\beta \\
-\gamma & \alpha
\end{array}\right]
$$

Solution: This follows from the algorithm given in the lecture notes; we can also check that

$$
\begin{aligned}
A A^{-1} & =\frac{1}{\alpha \delta-\beta \gamma}\left[\begin{array}{ll}
a & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{cc}
\delta & -\beta \\
-\gamma & \alpha
\end{array}\right] \\
& =\frac{1}{\alpha \delta-\beta \gamma}\left[\begin{array}{cc}
\alpha \delta-\beta \gamma & 0 \\
0 & \alpha \delta-\beta \gamma
\end{array}\right] \\
& =I \\
& =\frac{1}{\alpha \delta-\beta \gamma}\left[\begin{array}{cc}
\delta & -\beta \\
-\gamma & \alpha
\end{array}\right]\left[\begin{array}{ll}
a & \beta \\
\gamma & \delta
\end{array}\right] \\
& =A^{-1} A
\end{aligned}
$$

7. Lecture Notes Exercise 49: Prove the claim made in the lecture notes that if we can find as many as k linearly independent solutions x^{1}, \ldots, x^{k} to $A x=0$, then any $z \in S\left[x^{1}, \ldots, x^{k}\right]$ is a solution as well. That is, prove that $A x^{1}=A x^{2}=0 \Rightarrow A z=0 \forall z \in S\left[x^{1}, x^{2}\right]$.
Solution: If $z \in S\left[x^{1}, x^{2}\right], z$ can be written as a linear combination of x^{1} and x^{2}, such as $\alpha_{1} x_{1}+\alpha_{2} x_{2}$. Then $A z=A\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=$ $\alpha_{1} A x_{1}+\alpha_{2} A x_{2}=0$.
8. Lecture Notes Exercise 55: Let A have full rank. Show that $n u l l[A, b]=1$ if and only if $\operatorname{rank}[A, b]=\operatorname{rank}(A)$.
Solution: We have that $\operatorname{rank}[A, b]=\operatorname{rank}(A)=n$. This implies, first, that $[A, b]$ is not full rank (since it has $n+1$ columns). Then b can be written as $b=A x$. We know, however, that such a square system has a unique solution if and only if A has full rank, which it does, so the vector x which solves $A x=b$ is unique (up to scalar multiplication). Rewrite this system as the homogenous system $[A, b] y=0$, where $y=\left[\begin{array}{c}x \\ -1\end{array}\right]$. Because x is unique, so is y; more over, y is nonzero. There is thus exactly one vector solving $[A, b] y=0$, which is equivalent to $n u l l[A, b]=1$. Note well that although we went in the (if) direction, every step involved an equivalence - in other words, the same argument in reverse establishes (only if). The only thing we must note is that to move from $[A, b] y=0$ to $A b=x$, we must choose the point on the line described by y (i.e., the scalar multiple of y) with last coordinate -1 . Also, the last step requires that A being of full rank be a hypothesis maintained throughout.
9. (Harder - for extra credit). Let

$$
d_{n}=\operatorname{det}\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & \ldots & \ldots & 0 \\
-1 & 1 & 1 & 0 & \ldots & \ldots & 0 \\
0 & -1 & 1 & 1 & \ldots & \ldots & 0 \\
0 & 0 & -1 & 1 & \ldots & \ldots & 0 \\
0 & 0 & 0 & -1 & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & 1 \\
0 & 0 & 0 & 0 & \ldots & -1 & 1
\end{array}\right)
$$

This is an $n \times n$ matrix with ones on and right above the diagonal, negative ones right below the diagonal and zeros elsewhere.

Show that d_{n} is equal to the $(n+1)$ th term of the Fibonacci sequence.
Solution: Fibonacci sequence is defined by $a_{1}=a_{2}=1, a_{k}=a_{k-1}+a_{k-2}$. We have $d_{1}=a_{2}=1$ and $d_{2}=a_{3}=2$. All that remains is to show that $d_{k}=$ $d_{k-1}+d_{k-2}$ for all k. That is done by applying the definition of the determinant as given in class: in the decomposition with respect to the first column only two terms will be nontrivial. The required formula follows immediately.

