
14.102 Problem Set 1 Solutions

1. Let A =

µ
4 1 −2
2 0 1

¶
and B =

⎛⎝ 2 1
−3 0
1 1

⎞⎠
(a) Find C = AB

Solution: C =
µ
3 2
5 3

¶
(b) Find rank C

Solution: 2

(c) Find det C
Solution: -1

(d) Find D = BA

Solution: D =

⎛⎝ 10 2 −3
−12 −3 6
6 1 −1

⎞⎠
(e) Find rank D

Solution: Any two columns ofD are linearly independent, so rankD
is at least 2. On the other hand, it can not be above 2, since rank
of the product is no greater than rank of each of the matrices being
multiplied (why?). So rankD = 2

(f) Find det D
Solution: 0, since D is not full rank.

(g) Is C invertible? If so, find C−1

Solution: Yes, C−1 =
µ
−3 2
5 −3

¶
(h) Is D invertible? If so, find D−1

Solution: No, since detD = 0.

(i) Find eigenvalues of C

Solution: We have to solve
¯̄̄̄
3− λ 2
5 3− λ

¯̄̄̄
= 0 ⇐⇒ (3 − λ)2 =

10⇐⇒ 3− λ = ±
√
10⇐⇒ λ = 3±

√
10

(j) Solve the following two linear systems (Hint: you will need no extra
calculations!):

i.
½
3x+ 2y = 1
5x+ 3y = 0
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ii.
½
3u+ 2v = 0
5u+ 3v = 1

Solution: We have C
µ

x u
y v

¶
= I ⇐⇒

µ
x u
y v

¶
= C−1 =µ

−3 2
5 −3

¶
2. Lecture Notes Exercise 13: Given an m×n matrix A, show that S(B) ⊆

S(A) and N(A0) ⊆ N(B0) whenever B = AX for some matrix X. What
is the geometric interpretation?

Solution: Suppose X is n× l. Then B is m× l. We have S(A) = {y ∈
Rm|y = Ax for some x ∈ Rn}, and S(B) = {y ∈ Rm|y = Bx for some
x ∈ Rl}. We want to show that any y ∈ S(B) belongs to S(A) as well.
We have y = Bx = AXx = Az, where z = Xx, z ∈ Rn, implying that
y ∈ S(B) =⇒ y ∈ S(A).

For the second part, recall that N(A0) = {x ∈ Rm|A0x = 0}, and N(B0) =
{x ∈ Rm|B0x = 0}. We want to show that x ∈ N(A0) ⇒ x ∈ N(B0),
and the proof is similar to the previous part: if A0x = 0, then we have
B0x = X 0A0x = 0.

3. Lecture Notes Exercise 19/Lemma 20: Suppose {ej} is a basis for X; let
P = [pij ] be any nonsingular n × n matrix, and let fj =

P
i pijei. Show

then that {fj} is a basis for X as well.
Solution: As noted in the lecture notes, this is equivalent to saying
that if the matrix E, with columns consisting of the vectors {ej}, is a
basis for X, then F = EP is a basis for X as well. Note that since P is
nonsingular, we can write E = FP−1. First let us show that F spans
X. This is equivalent to saying that any x ∈ X can be written as x = Fc,
where c are the coordinates of x under the basis F . We already know that
E is a basis for X. So for any x ∈ X, we can write x = Ed = FP−1d = Fc,
as desired. c = P−1d, the coordinates of x under the basis F , is simply
the product of the inverted projection matrix P−1 and d, the coordinates
of x under the basis E.

What is meant by ’projection matrix’? That is, what is the role of
matrix P above? Notice that F = EP or fj = Epj means that pj ’s are
the coordinates of fj ’s under the basis E. Thus, if c are the coordinates
of x under E, Pc are its coordinates under F . This all means that the
transformation c 7→ Pc for P = E−1F just gives the new coordinates on
basis E given initial coordinates under basis F . And indeed P is just the
projection of F on E. We used the inverted projection matrix above
because we were going the other way: given initial basis E, we were
looking for the coordinates of x under the new basis F .

What remains to be shown is that the columns of F are linearly inde-
pendent. But this is immediate. One way to see it is that since P is
nonsingular, the dimensions of F are the same as the dimensions of E
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- so if F spans X, its columns must be linearly independent. Another
approach is to note that F is invertible: F−1 = P−1E−1.

4. For a square matrix A assume that all elements of both A and A−1 are
integers. What values can detA take?

Solution: If all elements of a matrix are integers, then so is its determi-
nant. We have two integers, detA and det(A−1), whose product is equal
to det I = 1. The only two possibilities are detA = 1 and detA = −1.

5. Lecture Notes Exercise 36: Using the properties of transpose and inverse:

(a) Prove that A−k = (Ak)−1

Solution: A−k = (A−1)k = A−1A−1 · · · A−1 (k times) = (Ak)−1

by the property that (AB)−1 = B−1A−1.

(b) Consider the matrix Z = X(X 0X)−1X 0 whereX is an arbitrarym×n
matrix. Under what conditions onX is Z well-defined? Show that Z
is symmetric. Also show that ZZ = Z (i.e., that Z is idempotent).
Solution: (X 0X) must be invertible. This can only be the case if
n < m (why?) and if rankX = n.

To show that Z is symmetric, note that (X 0X) is symmetric, and
hence so is (X 0X)−1 (why?). Now Z0 = (X(X 0X)−1X 0)0 = X 00(X 0X)−10X 0 =
X(X 0X)−1X 0 = Z.

To show that Z is idempotent, we check that ZZ = (X(X 0X)−1X 0)(X(X 0X)−1X 0) =
X(X 0X)−1(X 0X)(X 0X)−1X 0 = X(X 0X)−1IX 0 = X(X 0X)−1X =
Z.

6. Lecture Notes Exercise 42: Show that for a 2× 2 matrix

A =

∙
a β
γ δ

¸
provided |A| = αδ − βγ 6= 0, the inverse is

A−1 =
1

αδ − βγ

∙
δ −β
−γ α

¸
Solution: This follows from the algorithm given in the lecture notes; we
can also check that

AA−1 =
1

αδ − βγ

∙
a β
γ δ

¸ ∙
δ −β
−γ α

¸
=

1

αδ − βγ

∙
αδ − βγ 0

0 αδ − βγ

¸
= I

=
1

αδ − βγ

∙
δ −β
−γ α

¸ ∙
a β
γ δ

¸
= A−1A
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7. Lecture Notes Exercise 49: Prove the claim made in the lecture notes
that if we can find as many as k linearly independent solutions x1, ..., xk

to Ax = 0, then any z ∈ S[x1, ..., xk] is a solution as well. That is, prove
that Ax1 = Ax2 = 0 ⇒ Az = 0∀z ∈ S[x1, x2].

Solution: If z ∈ S[x1, x2], z can be written as a linear combination
of x1 and x2, such as α1x1 + α2x2. Then Az = A(α1x1 + α2x2) =
α1Ax1 + α2Ax2 = 0.

8. Lecture Notes Exercise 55: Let A have full rank. Show that null[A, b] = 1
if and only if rank[A, b] = rank(A).

Solution: We have that rank[A, b] = rank(A) = n. This implies, first,
that [A, b] is not full rank (since it has n + 1 columns). Then b can be
written as b = Ax. We know, however, that such a square system has a
unique solution if and only if A has full rank, which it does, so the vector x
which solves Ax = b is unique (up to scalar multiplication). Rewrite this

system as the homogenous system [A, b]y = 0, where y =
∙
x
−1

¸
. Because

x is unique, so is y; more over, y is nonzero. There is thus exactly one
vector solving [A, b]y = 0, which is equivalent to null[A, b] = 1. Note
well that although we went in the (if) direction, every step involved an
equivalence - in other words, the same argument in reverse establishes
(only if). The only thing we must note is that to move from [A, b]y = 0
to Ab = x, we must choose the point on the line described by y (i.e., the
scalar multiple of y) with last coordinate −1. Also, the last step requires
that A being of full rank be a hypothesis maintained throughout.

9. (Harder — for extra credit). Let

dn = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 ... ... 0
−1 1 1 0 ... ... 0
0 −1 1 1 ... ... 0
0 0 −1 1 ... ... 0
0 0 0 −1 ... ... 0
... ... ... ... ... ... 1
0 0 0 0 ... −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
This is an n×n matrix with ones on and right above the diagonal, negative

ones right below the diagonal and zeros elsewhere.
Show that dn is equal to the (n+ 1)th term of the Fibonacci sequence.
Solution: Fibonacci sequence is defined by a1 = a2 = 1, ak = ak−1+ ak−2.

We have d1 = a2 = 1 and d2 = a3 = 2. All that remains is to show that dk =
dk−1+dk−2 for all k. That is done by applying the definition of the determinant
as given in class: in the decomposition with respect to the first column only two
terms will be nontrivial. The required formula follows immediately.
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