
14.102 Problem Set 2 Solutions

1. Lecture Notes Exercise 78: Consider the 2× 2 identity matrix. What are
its eigenvalues? Find a V = [v1 v2] such that V 0V = I and V −1IV = I.
What are the corresponding {M1,M2}?
Solution: The 2 × 2 identity matrix has one eigenvalue, 1, with multi-
plicity two. Any vector belonging to R2 will work as an eigenvector, so
we can freely choose two that satisfy the conditions given. The natural

choice is v1 =
µ
1
0

¶
, v2 =

µ
0
1

¶
. Note that this makes V be the 2 × 2

identity matrix itself, which is its own transpose and inverse - so we have
nothing but identity matrices in the equations V 0V = I and V −1IV = I.
M1 = M2 = R2, because each characteristic manifold is the span of all
eigenvectors associated with the eigenvalue 1 - which, again, are all vectors
in R2.
Consider now

A =

⎡⎣ 1 0 0
0 2 3
0 3 1

⎤⎦
Find an orthonormal V and a diagonal Λ such that V 0AV = Λ. Hint:
remember that if v is an eigenvector, then φv is also an eigenvector for
any scalar φ.

Solution: Expanding along the first row or first column, we have

|A− λI| = (1− λ)[(2− λ)(1− λ)− 9] = 0

The roots of this equation are 1, 3±
√
37

2 . Note that these eigenvalues are
distinct. Recall that we spent some time in class going over the correc-
tion of a theorem which said that eigenvectors for distinct eigenvalues are
orthogonal. The correction (which is also captured in a separate handout
on the course website) pointed out that this was true only for symmetric
matrices. Since A is symmetric, we know this will be the case; if we find
any three eigenvectors, they will necessarily be orthogonal to one another
(we also know that eigenvalues and eigenvectors are real). So first we’ll
just find an eigenvector for each eigenvalue.

(a) λ1 = 1 : We need |A− I| v1 = 0. That is,⎡⎣0 0 0
0 1 3
0 3 0

⎤⎦ v1 =
⎡⎣00
0

⎤⎦
It is clear that any vector with zeroes in its second two components
will work, so we will set v1 = (1, 0, 0). Notice that this choice im-
plies that we will have to set the first component of the other two
eigenvectors to zero to have orthogonality.
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(b) λ2 =
3+
√
37

2 : We have⎡⎢⎣− 12 −
√
37
2 0 0

0 1
2 −

√
37
2 3

0 3 −12 −
√
37
2

⎤⎥⎦
⎡⎣0α
β

⎤⎦ =
⎡⎣00
0

⎤⎦
This gives us the system

(
1

2
−
√
37

2
)α+ 3β = 0

3α+ (−1
2
−
√
37

2
)β = 0

Which tells us that β = (
√
37−1
6 )α; any vector with α and β in this

ratio will work. The natural choice is v2 = (0, 1,
√
37−1
6 ).

(c) λ3 =
3−
√
37

2 : Following the same procedure,⎡⎢⎣− 12 +
√
37
2 0 0

0 1
2 +

√
37
2 3

0 3 −12 +
√
37
2

⎤⎥⎦
⎡⎣0α
β

⎤⎦ =
⎡⎣00
0

⎤⎦
yields

(
1

2
+

√
37

2
)α+ 3β = 0

3α+ (−1
2
+

√
37

2
)β = 0

or β = −(
√
37+1
6 )α. We can set v3 = (0, 1,−

√
37+1
6 ).

These three eigenvectors are orthogonal, but not orthonormal be-
cause v02v2 6= 1 and v03v3 6= 1. But recall that any scalar multiple
of an eigenvector is still an eigenvector - so we can normalize these
three as needed.
v1 is fine. To normalize v2, observe that v02v2 = 0+1+

1
36(37−2

√
37+

1) = 1
18(37 −

√
37). If we call this number φ−2, then (φv2)0(φv2) =

φ2v02v2 = 1. Similarly, v
0
3v3 =

1
18(37+

√
37) ≡ ψ−2; then (ψv3)0(ψv3) =

ψ2v03v3 = 1. So our orthonormal V is (v1, φv2, ψv3), and Λ =
diag(λ1, λ2, λ3), the diagonal matrix with the three eigenvalues on
the diagonal.

2. Lecture Notes Exercise 91: Show that if X is symmetric and idempotent,
then X is also positive semi-definite. Note that prior to 9/29, ’and idem-
potent’ was missing from the lecture notes, but is needed! Optional: can
you see why?

Solution: X = XX = X 0X. So define y = Xa, a ∈ Rn. Then
a0Xa = a0X 0Xa = y0y =

P
i y
2
i ≥ 0, so X is positive semi-definite.
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3. Give an example of a function that is continuous at exactly one point (say,
0) and is also differentiable at this point.

Solution: As in class, define function D(x) =

½
1, x ∈ Q
0, x /∈ Q . Then

f(x) = x2D(x) will work.

4. Lecture Notes Exercise 122: Find the domains of the following functions
f : R→ R :

(a) f(x) =
√
x (note: we typically adopt the convention that the square

root of x refers to the positive root, unless explicitly stated otherwise.
Solution: {x ∈ R : x ≥ 0}

(b) f(x) = 1
x2+2x−3

Solution: {x ∈ R : x2 + 2x− 3 6= 0} = {x ∈ R : x 6= −1, x 6= 3}
(c) f(x) = 1

sinx +
1

cosx

Solution: {x ∈ R : sinx 6= 0, cosx 6= 0} = {x ∈ R : x 6= nπ
2 , n ∈ Z}

5. (Sundaram 4.4, page 110) For each of the following functions, state whether
the conditions of the Weierstraß theorem apply. Find and classify all
critical points (local maximum, local minimum, neither) of each of the fol-
lowing functions. For local optima that you find figure out whether they
are also global optima. Try to save your time by avoiding using second
order approach wherever possible.

Solution: For none of these functions is the domain compact, so the
conditions of Weierstraß do not apply. However, as these conditions are
only sufficient for extrema, this does not imply that we cannot find local
or global optima.

(a) f(x, y) = x sin y

Solution: At any critical point we have sin y = 0, meaning that
cos y = ±1 6= 0 and hence x = 0. So critical points are (0, πk),
k ∈ Z.Given that f is periodic in y, all these points look “the same” as
(0, 0) which is clearly neither maximum nor minimum (f(x, y) ≈ xy
around (0, 0), so f can go both slightly above and slightly below 0
for small x and y). So no local extrema.

(b) f(x, y) = 1
x +

1
y

Solution: Here the failure to satisfy Weierstrass does in fact mean
that we cannot find maxima or minima on the domain of this func-
tion.
Note: suppose we introduce a constraint that makes the domain
compact - then we should be able to find extrema. For example -

f(x, y) = 1
x +

1
y subject to

¡
1
x

¢2
+
³
1
y

´2
=
¡
1
a

¢2
. We may change

variables to u = 1
x and v = 1

y and then maximize and minimize
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u + v on the circle u2 + v2 =
¡
1
a

¢2
, with four points omitted (those

where either u or v is zero) that makes the problem not compact
and hence Weierstraß theorem not applicable. Geometrically it is
clear that maximum will be at u = v = 1

a
√
2
and the minimum at

u = v = − 1
a
√
2
(respectively, x = y = a

√
2 and x = y = −a

√
2).

(c) f(x, y) = x4 + y4 − x3

Solution: A function f(x, y) that is decomposable as f(x, y) =
g(x) + h(y) has critical points at points (x0, y0) if and only if x0 is a
critical point for g and y0 is a critical point for h (why?). Moreover,
(x0, y0) is a local minimum (maximum) of f if and only if x0 and y0
are local minima (maxima) of g and h simultaneously.
Now, h(y) = y4 has only one critical point y0 = 0 and it is a local
minimum. Consequently, f(x, y) does not have local maxima at all
and only has a local minimum wherever g(x) = x4 − x3 has a local
minimum, which apparently is at point x0 = 3

4 . The other critical
point of f is (0, 0) which is local minimum for h but not an extremum
for g, so is not an extremum for f either.
Point ( 34 , 0) is also the global minimum for f(x, y) (which is bounded
from below).

6. (Simon and Blume 15.6, page 342) Consider the function F (x1, x2, y) =
x21 − x22 + y3.

(a) If x1 = 6 and x2 = 3, find a y which satisfies F (x1, x2, y) = 0.
Solution: We have 36− 9 + y3 = 0, or y = −3.

(b) Does this equation define y as an implicit function of x1 and x2 near
x1 = 6, x2 = 3?
Solution: Given (x∗1, x

∗
2, y
∗) = (6, 3,−3), we have ∂F

∂y (x
∗
1, x
∗
2, y
∗) =

3y∗2 = 27 6= 0, so it does.
(c) If so, compute ( ∂y∂x1

)(6, 3) and ( ∂y∂x2
)(6, 3).

Solution: ∂y
∂x1
(6, 3) = −

∂F
∂x1
∂F
∂y

(6, 3, y∗(6, 3)) = −2x13y2 (6, 3, y
∗(6, 3)) =

−1227
∂y
∂x2
(6, 3) = −

∂F
∂x2
∂F
∂y

(6, 3, y∗(6, 3)) = 2x2
3y2 (6, 3, y

∗(6, 3)) =

6
27

(d) If x1 increases to 6.2 and x2 decreses to 2.9, estimate the correspond-
ing change to y.
Solution: ∂y

∂x1
(6, 3) ∗ (0.2) + ∂y

∂x2
(6, 3) ∗ (−0.1) = (−1227) ∗ (0.2) +

( 627) ∗ (−0.1) = −
3
27 , so y changes by −

1
9 .
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