
14.102 Problem Set 3

Due Thursday, October 21, 2004, in class

Starred (*) problems will not count for the grade on this problem set; they
are based on material from lectures on 10/21 and 10/26, and provide practice
for the midterm on 10/28. If you would like to do them prior to 10/21 and
hand them, I will be happy to make comments. Solutions to all problems will
be posted after class on 10/21.

1. Lecture Notes Exercise 168: For a function f defined on a convex subset
U in Rn, show that f concave implies f quasiconcave.
Solution: Such an f satisfies f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y)
for any x, y ∈ U and 0 < λ < 1. We will show that this means that
f(x) ≥ f(y) implies f(λx+ (1− λ)y) ≥ f(y), again for any x, y ∈ U and
0 < λ < 1. So suppose that we have chosen x and y such that f(x) ≥ f(y).
Then we have

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) ≥ λf(y) + (1− λ)f(y) = f(y)

2. (Sundaram 5.11, page 144) Consider the problem of maximizing the utility
function u(x, y) = x

1
2 + y

1
2 on the budget set px + y = 1, x ≥ 0, y ≥ 0.

Show that if non-negativity constrains are ignored, and the problem is
written as an equality-constrained one, the resulting Lagrangean has a
unique critical point. Does this critical point identify a solution to the
problem? Why or why not?

Solution: We have L(x, y, λ) =
√
x+
√
y−λ(px+y−1). The only critical

point is given by 1
2
√
x
= pλ and 1

2
√
y = λ, so y = p2x. Plugging that to

the budget constraint gives x = 1
p+p2 , y = p

1+p .

This unique critical point is indeed the solution to our problem: generally,
if we ignore some constraints and find a solution to the problem with
relaxed constraints, and it so happens that those relaxed constraints are
satisfied at the solution we find, then this is also a solution to the problem
with relaxed constraints. Make sure you understand this logic.

3. (Sundaram 6.12, page 171) A firm produces a single output y using three
inputs x1, x2, x3 in nonnegative quantities through the relationship y =
x1(x2 + x3).The unit price of y is py > 0 while that of the input xi is
wi > 0, i = 1, 2, 3.

(a) Describe the firm’s profit-maximization problem and derive the equa-
tions that define the critical points of the Lagrangean L in this prob-
lem.
Solution: The firm want to maximize pyy − w1x1 − w2x2 − w3x3
subject to y = x1(x2 + x3) and x1, x2, x3 ≥ 0. We may immediately
plug the first constraint to the objective to make life easier.
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The Lagrangian is L(x1, x2, x3, λ1, λ2, λ3) = pyx1(x2 + x3)−w1x1 −
w2x2−w3x3+λ1x1+λ2x2+λ3x3. Critical points are then given by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

py(x2 + x3) = w1 − λ1
pyx1 = w2 − λ2
pyx1 = w3 − λ3
λ1x1 = 0
λ2x2 = 0
λ3x3 = 0

(b) Show that the Lagrangean L has multiple critical points for any
choice of (py, w1, w2, w3) ∈ R4++.
Solution: x1 = x2 = x3 = 0, λi = wi, i = 1, 2, 3 is always a critical
point. So is λ1 = λ2 = 0 6= λ3 for w3 > w2 and λ1 = λ3 = 0 6= λ2
for w2 > w3. For w2 = w3 any x2 and x3 such that x2 + x3 =

w1
py
is

a critical point.

(c) Show that none of these critical points identifies a solution of the
profit-maximization problem. Can you explain why this is the case?
Solution: This is the case simply because there is no solution to
the profit-maximization problem at all. That is, the profits can be
potentially made infinite. To see this, consider moving along the line
x1 = x2 = a, x3 = 0. Profits then are pya2− (w1+w2)a, which grows
to infinity as a→∞.

4. (Sundaram 8.25, page 201) An agent who consumes three commodities
has a utility function given by u(x1, x2, x3) = 3

√
x1 +min{x2, x3}. Given

an income of I and prices p1, p2, p3, write down the consumer’s utility-
maximization problem (you need not solve it1). Can the Weierstraß
and/or Kuhn-Tucker theorems be used to obtain and characterize a solu-
tion (that is, are they applicable to this problem)? Why or why not?

Solution: The problem is to maximize u(x1, x2, x3) = 3
√
x1+min{x2, x3}

subject to p1x1 + p2x2 + p3x3 ≤ I. The Weierstraß theorem is applicable,
as long as prices are strictly positive, but Kuhn-Tucker theorem is not
applicable, since u is not a C1 function (it is not differentiable at points
where x2 = x3). The way to solve it will be to notice that it is never
optimal to have x2 6= x3 (if, say, x2 < x3, then cutting down on x3 and
buying some more of x2 will improve utility). Therefore, we may denote by
x the composite good composed of equal quantities of x2 and x3, which
is going at price p = p2 + p3. The problem then becomes to maximize
u(x1, x) = 3

√
x1 + x subject to p1x1 + px ≤ I; now Kuhn-Tucker theorem

is applicable.

5. Lecture Notes Exercise 205: Compute
R +∞
a

te−rtdt (use integration by
parts).

1 If you ever take a class from Bengt, or an exam he writes, you will become very used
to problems that require you only to set up the program (but which can still be surprisingly
difficult!).
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Solution:
R +∞
a

te−rtdt = [− t
re
−rt]+∞a +

R +∞
a

1
r e
−rtdt = [− t

re
−rt −

1
r2 e
−rt]+∞a = ra−1

r2 e−ra

6. Lecture Notes Exercise 206: Compute
R +∞
0

e−
√
tdt (use the change of

variable u =
√
t).

Solution: u =
√
t, so dt = 2udu. The limits of integration don’t change,

so we haveR +∞
0

e−
√
tdt =

R +∞
0

2ue−udu = 2{[−ue−u]+∞0 +
R +∞
0

e−udu} = 2[−e−u(u+
1)]+∞0 = 2

7. Lecture Notes Exercise 211: For each of the following relations, show that
R is (or is not) reflexive, symmetric, and transitive. In each, x, y ∈ Rn.

(a) xRy if x1 > y1, where x1 and y1 are the respective first elements of
x and y.
Solution: x1 > x1 cannot hold, so R is not reflexive. Moreover,
only one of {x1 > y1, x1 < y1, x1 = y1} can hold, so R is not symmet-
ric. But if x1 > y1, and y1 > z1 for a third vector z, then x1 > z1;
R is transitive.

(b) xRy if x1 = y1
Solution: x1 = x1 must hold; x1 = y1 =⇒ y1 = x1; and if x1 = y1
and y1 = z1, then x1 = z1; thus, R is reflexive, symmetric, and
transitive (it is an equivalence relation - note the implication that an
equivalence relation need not be equality).

(c) xRy if kxk = kyk
Solution: We have exactly the same arguments as in part (b)
leading to the conclusion that R is an equivalence relation (reflexive,
symmetric, and transitive). Note that k·k is a function from Rn to
R. We cannot put an order on n-tuples (vectors); it may not always
be possible to say x > y, x < y, or x = y for any pair x, y ∈ Rn. But
a function mapping vectors onto the real line can help us to do this,
because we can order the real numbers. This is one aspect of the
utility function - it takes bundles of goods which are not inherently
comparable and maps them onto the real line, allowing us to rank
them according to a preference relation. Can you tell if u(x) = kxk
could be a utility function?

8. Let A be a nonempty set of real numbers which is bounded below. Let
−A be the set of all real numbers −x, where x ∈ A. Prove that

inf A = − sup(−A)

Solution: First we note that because A is bounded below, inf A exists
in R. Call it α. Now, by definition, α is a lower bound for A, but if
there exists a γ > α, γ is not a lower bound for A. Now consider −α.
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Because α ≤ x for all x ∈ A, we know that −α ≥ −x for all −x ∈ −A.
Thus, −α is an upper bound for −A (Note: if A is bounded below, then
we know that −A is bounded above, and hence that sup(−A) exists in
R). Now consider β < −α. If β is an upper bound for −A, then β ≥ y
for all y ∈ −A. But this would imply, first, that −y ∈ A, and, second,
that −y ≥ −β > α, i.e. that there exists a real number greater than α
which is a lower bound for A. But we began by pointing out that this
is not the case, since α = inf(A). Thus, any such β is not an upper
bound for −A, which means that −α = sup(−A), which in turn implies
that α = inf A = − sup(−A).

9. (*) Prove carefully that the sum of two convergent sequences is convergent
and its limit is the sum of the limits.

Solution: Let {an}→ a and {bn}→ b.We want to show that {an+bn}→
a+ b. By definition of convergence, this means that ∀ε > 0 ∃N : ∀n > N
|an + bn − (a + b)| < ε. Indeed, for a given ε > 0 consider ε1 =

ε
2 .

By definition of convergence, there must exist Na such that ∀n > Na

|an−a| < ε1; likewise, there must existNb such that ∀n > Nb |bn−b| < ε1.
Set N = max{Na, Nb}. Now for any n > N we have |an+ bn− (a+ b)| =
|an − a+ bn − b| ≤ |an − a| + |bn − b| < ε1 + ε1 = ε. This completes the
proof.

10. (*) Find all limit points of the following sequence: 1, 1, 2, 1, 2, 3, 1, 2, 3,
4,...

Solution: All positive integers are limit points of this sequence.

11. (*) Show that the intersection of (even infinitely many) closed sets is
closed. Give an example of an infinite family of closed sets whose union is
not closed.

Solution: By definition, a set is closed if its complement is open. We
have to prove that the complement of an intersection of closed sets is
open, which is the same as the union of complements of each of them
(why?), which are all open by definition. Therefore, we have to prove that
the union of (any number of) open sets is open. The latter statement is
straightforward: if a point belongs to the union, it belongs to one of the
sets which, being open, contains a small enough open ball centered in our
point and this ball must, therefore, be contained in the union, proving
that the union is open.

Make sure you understand the logic of the above solution and can, if
needed, reproduce it.

If An = { 1n}, then each An is closed (it is a singleton), but their union is
not (limit point 0 is missing).

12. (*) Let A = [−1; 0) and B = (0, 1]. Examine whether each of the following
statements is true or false:

4



(a) A ∪B is compact;
Solution: False. Point 0 is missing making the set not closed.

(b) A+B = {x+ y|x ∈ A, y ∈ B} is compact;
Solution: False. A+B = (−1; 1) which is not closed.

(c) A ∩B is compact.
Solution: True. A ∩B = ∅ which is closed and bounded.

13. (*) Define

f(x) =

½
1 if 0 ≤ x ≤ 1
0 otherwise.

Find an open set O such that f−1(O) is not open and a closed set C such
that f−1(C) is not closed.

Examples: O = ( 12 ,
3
2 ) and C = {0}

14. (*) (Harder) Start from any set A ∈ Rn. Consider the following two op-
erations: taking closure of a set and taking convex hull of a set. At most
how many distinct sets can one obtain by consecutively applying these
operations to A (in any order)? Try to show that the number you get is
indeed the maximum.

Solution: Convince yourself that the closure of a convex set is convex (I
will try to explain it in class). Now if you start from any set A, you can go
to cl(A) then to con(clA) then to cl(con(clA) at which point you end up
with a closed convex set, so you can go no further. Therefore maximum
number of distinct sets that you get can not go above four. This bound
can indeed be achieved: if A = {(x, y) ∈ R2|x ∈ Q, x 6= 0, y = 1

|x|}. Make
sure you can see what A, cl(A), con(cl(A)) and cl(con(cl(A))) are and that
they are indeed all distinct.
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