
14.102 Problem Set 4 Solutions
Fall, 2004

Lecture: Pierre Yared
TA: Nathan Barczi

1 Optimization in Discrete Time
We’re going to apply the tools we used in class using the Lagrange multiplier
to the following problem with many more variables and with two constraints.
Note that interest rate R is exogenous here. Since we only want to characterize
laws of motion, we’re going to ignore initial and terminal conditions.

max
{ct}∞t=0
{kt+1}∞t=0
(at+1}∞t=0
{it}∞t=0

∞X
t=0

βtU(ct) (1)

s.t.

at+1 = −ct + F (kt)− it(1 + γ
it
kt
) +Rat, and

kt+1 = (1− ς)kt + it

1. Write out the problem in Lagrange form. Let λt represent the multiplier
for the first constraint and µt be the multiplier for the second constraint.

Solution: L(ct, kt+1, at+1, it, λt, µt) =
∞X
t=0

{βtU(ct)−λt[at+1+ct−F (kt)+

it(1 + γ it
kt
)−Rat]− µt[kt+1 − (1− ς)kt − it]}

2. Determine the first order conditions with respect to ct, kt+1, at+1, and it.
Do second order conditions hold? Under what circumstances will they
hold? From now on, assume all first order conditions hold with equality.

Solution:

ct : βtU 0(ct)− λt ≥ 0

kt+1 : λt+1[F
0(kt+1) + γ(

it+1
kt+1

)2]− µt + µt+1(1− ς) ≥ 0

at+1 : λt − λt+1R ≥ 0

it : −λt(1 + 2γ
it
kt
) + µt ≥ 0

The Hessian for this system is diagonal, so that checking second-order
conditions consists of checking that each second derivative is negative.
This is the case so long as U 00(ct) and F 00(kt) are negative, which we
generally assume to be the case.
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3. Define a new variable qt = µt/λt. Rewrite the first order condition with
respect to it such that you have an equation for it/kt as a function of qt.

Solution: Simply divide through by λt to find

it
kt
=

qt − 1
2γ

4. Combine the first order condition for kt+1 with the first order condition
for at+1 in order to describe qt as a fucntion of qt+1, kt+1, it+1.

Solution: Divide through the first order condition for kt+1 by λt+1 to
get

F 0(kt+1) + γ(
it+1
kt+1

)2 − µt
λt+1

+
µt+1
λt+1

(1− ς) = 0

and noting that, from the first order condition for at+1, λt+1 = λt
R , we

have
F 0(kt+1) + γ(

it+1
kt+1

)2 −Rqt + qt+1(1− ς) = 0

5. Combine the answer in (4) with the answer in (3) to write qt as a function
of qt+1 and kt+1 (get rid of it+1).

Solution: Plugging (3) into (4), we have

qt =
1

R
[F 0(kt+1) + γ(

qt+1 − 1
2γ

)2 + qt+1(1− ς)]

6. Combine the answer in (3) with the law of motion of capital to solve for
kt+1 as a function of kt and qt.

Solution: We use (3) to eliminate it in the law of motion of capital, and
get

kt+1 = (1− ς +
qt − 1
2γ

)kt

7. Now that you have two difference equations in q and k, what value of
qt sets kt = kt+1, as required in steady state? What values of kt set
qt = qt+1 as required in steady state?

Solution: Using (6), we find that kt = kt+1 requires

1− ς +
qt − 1
2γ

= 1

qt = 2γς + 1

and using (5), we find that qt = qt+1 is satisfied when kt solves

F 0(kt) = (R− 1 + ς)qt − γ

µ
qt − 1
2γ

¶2
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2 Optimization in Continuous Time
Let’s solve the same problem in continuous time (note: r = R − 1, although
this is not important to you solving the problem).

max
ct,kt,at,it

Z ∞
0

e−rtU(ct)dt (2)

s.t.
·
at = −ct + F (kt)− it(1 + γ

it
kt
) + rat

·
kt = −ςkt + it

1. Write out the problem in Lagrange form. Let λt represent the multiplier
for the first constraint and µt be the multiplier for the second constraint.
Normalize each multiplier by e−rt.

Solution: We write

Lt =

Z ∞
0

e−rt{U(ct)−λt[
·
at+ct−F (kt)+it(1+γ

it
kt
)−rat]−µt[

·
kt+ςkt−it]}dt

Note that we have already normalized the multipliers; that is, we have
used e.g. λte−rt = eλt as the multiplier for the first constraint.

2. Before converting the equation into a present value Hamiltonian make the
following change of variable: let qt = µt/λt, and rewrite the Lagrangian
as a function of λt and qt alone. Convert the equation into a present

value Hamiltonian which omits
·
at and

·
kt and includes

·
λt and

·
qt instead.

Solution: The change of variable gives us

Lt =

Z ∞
0

e−rt{U(ct)−λt[
·
at+ct−F (kt)+it(1+γ

it
kt
)−rat]−λtqt[

·
kt+ςkt−it]}dt

We then employ integration by parts on
Z ∞
0

e−rtλt
·
atdt and

Z ∞
0

e−rtλtqt
·
ktdt

, and drop the constant terms (we have ignored the assumptions on termi-
nal conditions that allow us to do this; this is where they are important),
to get our present-value Hamiltonian:

Ht = e−rt{U(ct)+at(
·
λt−rλt)−λt[ct−F (kt)+it(1+γ

it
kt
)−rat]+kt(

·
λtqt+λt

·
qt−rλtqt)−λtqt[ςkt−it]}

3. Determine the first order conditions for ct, kt, at, and it.
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Solution:

ct : U 0(ct)− λt = 0

kt : λt[F
0(kt) + γ(

it
kt
)2] +

·
λtqt + λt

·
(qt − qt(r + ς)) = 0

at :
·
λt = 0

it : λt(1 + 2γ
it
kt
− qt) = 0

4. Combine the first order condition for at and the first order condition for
kt to cancel out all terms with λt in the equation for kt.

Solution:
·
λtqt drops out from the first order condition for at, so we are

left with
F 0(kt) + γ(

it
kt
)2 +

·
qt − qt(r + ς) = 0

5. Plug the first order condition for it into the equation just derived so that
you are left with an expression of

·
qt as a function of qt and kt.

Solution: The first order condition for it can be rearranged to yield

it
kt
=

qt − 1
2γ

and we can plug this into the answer from (4) to get

·
qt = qt(r + ς)− F 0(kt)− γ(

qt − 1
2γ

)2

6. Plug the first order condition for it into the law of motion for capital so

that you have an expression for
·
kt as a function of qt and kt.

Solution: We plug it
kt
= qt−1

2γ into the law of motion for capital to get

·
kt = (

qt − 1
2γ

− ς)kt

7. Now that you have two differential equations in q and k, what value of qt

sets
·
kt = 0, as required in steady state? What values of kt set

·
qt = 0 as

required in steady state?

Solution: As in Question 1, qt = 2γς + 1 satisfies
·
kt = 0. Similarly, for

·
qt = 0, we have

F 0(kt) = (r + ς)qt −
1

4γ
(qt − 1)2

Notice (using R − 1 = r) that these are the same answers we had in
Question 1.
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3 Phase Diagrams
1. Using the result in part 7 of question 2, draw a phase diagram with q on
the y axis and k on the x axis.

Solution: The
·
k = 0 locus is horizontal at q = 2γς + 1, and the

·
q = 0

locus is downward sloping near the steady state. See diagram at the end
of these solutions for all parts of this question.

2. Is the system globally stable? Is it locally stable? If it is locally stable,
where is the stable arm?

Solution: The system is locally stable. For this problem set it was
sufficient to see this graphically in the phase diagram, but note that if we
assumed a particular functional form for F (k) we could log-linearize and
write the system as a first-order Taylor expansion, and find the eigenvector
corresponding to the (one) negative eigenvalue of the 2x2 matrix in that
expansion to actually identify the stable arm.

3. Now, assume that you are in the steady sate and there is an exogenous
increase in γ. Describe the path of the economy, so describe in words
what happens to kt and to qt. (HINT: when an exogenous shock occurs,
we jump to the new stable arm immediately, and then follow it to the new
steady state).

Solution: See diagram, where γ has increased to γ and the new
·
k = 0

and
·
q = 0 loci are in bold. The jump to the new stable arm is the arrow

pointing up from the initial steady state level of capital k∗0 , and then the
economy moves along the stable arm to the new steady state at k∗1 . The
idea is that in the immediate future, capital is fixed, but investment is not
- so investment adjusts to as to move the economy onto the point (k∗0 , q)
where q is determined by investment so as to meet the requirement that
the economy be on the new stable arm.

4 Infinite Sums
1. Take the equation for qt as a function of qt+1, kt+1, and it from problem
1 (make sure to keep the it term in there; otherwise you have a quadratic
in qt+1). Plug in recursively forward for qt+1 so you have qt being equal
to an infinite sum. What does this sum look like (you do not have to
solve for anything explicitly, just plug in and explain intuitively what it
looks like)? It turns out that qt refers to Tobin’s q here, so perhaps you
can see from the result that this term tells us something about the future
productive capacities of the economy.
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Solution: We have

qt =
1

R
{F 0(kt+1) + γ(

it+1
kt+1

)2 + qt+1(1− ς)}

=
1

R
{F 0(kt+1) + γ(

it+1
kt+1

)2 + [
1

R
{F 0(kt+2) + γ(

it+2
kt+2

)2 + qt+2(1− ς)}](1− ς)}
= ...

=
∞X
s=0

(1− ς)s

Rs+1
{F 0(kt+s+1) + γ(

it+s+1
kt+s+1

)2}

(Note that the last term drops off so long as we assume that q∞ does not
explode). As for what this ’looks like’ - the answer was basically given in
the question; this infinite sum is a present discounted value of the future
productive capacity of the capital stock

2. Take the equation of
·
qt as a function of qt, kt, and it from problem 2 (as

before, do not plug in for it). Move all of the terms involving q to one
side (Hint: you will be left with

·
qt − (r + ς)qt on one side). Multiply

both sides by e−(r+ς)t and integrate the two sides from t to ∞. You
should have an expression (you do not have to solve explicitly for it) for
qt. What does this sum look like?

Solution: The equation is

·
qt − qt(r + ς) = −F 0(kt)− γ(

it
kt
)2

Following the hints, we find thatZ ∞
t

e−(r+ς)τ [
·
qτ − qτ (r + ς)]dτ = −

Z ∞
t

e−(r+ς)τ [F 0(kτ ) + γ(
iτ
kτ
)2]dτ

qte
−(r+ς)τ

¯̄̄∞
t

= −
Z ∞

t

e−(r+ς)τ [F 0(kτ ) + γ(
iτ
kτ
)2]dτ

qt = ert
Z ∞

t

e−(r+ς)τ [F 0(kτ ) + γ(
iτ
kτ
)2]dτ

This is, of course, simply the continuous-time counterpart to the answer
in part 1. Note that the point of this question was simply to illustrate
how to use an integrating factor to change the differential equation in q
into an expression for q that conveys the same information as the infinite
sum in part 1.

3. Here is a different scenario. Imagine I have an exogenous income stream
of y which I receive in every period so that yt = y∀t. There are two
interest rate in the economy. For periods t ∈ [0, T1] the interest rate is
1 + r1. For periods t ∈ (T1,∞), the interest rate is 1 + r2.
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(a) Assume we are in discrete time. Write out the present discounted
value of my income stream from the standpoint of t = 0.

Solution: y

"
T1X
t=0

1
(1+r1)t

+ 1
(1+r1)T1

∞X
s=1

1
(1+r2)s

#
(b) Assume we are in continuous time. Write out the present discounted

value of my income stream from the standpoint of t = 0.

Solution: y

"Z T1

0

e−r1tdt+

Z ∞
T1

e−r1T1−r2tdt

#
(c) Assume the same setup in discrete time, but instead we have an arbi-

trary interest rate sequence {rt}∞t=0. What is the present discounted
value of my income stream now?

Solution: y

⎡⎣ ∞X
t=0

1Yt

s=0
(1+rs)

⎤⎦ ; note that we usually assume r0 =
0.

(d) Assume the same setup in continuous time, but instead we have an
arbitrary interest rate function r(t). What is the present discounted
value of my income stream now?

Solution: y
∙Z ∞

0

exp{−
Z t

0

r(s)ds}dt
¸
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k

q2γζ+1

2γζ+1

kdot=0

qdot=0

k*0 
k*1 

stable arm


