
14.102 Problem Set 5 Solutions
Fall, 2004

Lecturer: Pierre Yared

TA: Nathan Barczi

1 Dynamic Optimization in a Deterministic Environment

Consider the below simple model of savings where a consumer maximizes the following

program:

max
{ct}∞t=0

∞X
t=0

βt
c1−σt

1− σ
(1)

s.t. ωt= et +Rtbt, ωt = ct + bt+1, (2)

ω0> 0 given, et = e ∀t, Rt = R ∀t, (3)

and σ > 0, σ 6= 1 (4)

et represents endowment, bt represents bond holdings, and Rt is the interest rate. ωt can

be interpreted as cash in hand (money you make from endowment plus wealth).1

Note: When I wrote the solutions I failed to notice that R is constant,
which is why ’t+1’ is appended to R throughout. Sorry about that.

1. Note that ωt+1 = Rt+1 (ωt − ct) + et+1 so that we can ignore {bt}∞t=0 altogether.
Explain in words, why we can rewrite the problem in the following form Bellman

Equation:

V (ωt) = max
ct

½
c1−σt

1− σ
+ βV (ωt+1)

¾
(5)

Solution: The value function represents a discounted sum of future utilities given

optimal decision making. It is a function only of the state variable - what you are

given to work with; that you will make the right decisions is assumed. Writing the

problem in this recursive manner implies that you are thinking of the problem in

the following way: you begin today with a given level of wealth. You consume

some, and the rest becomes the level of wealth that your tomorrow-self will begin

the day with (plus interest, etc.). You assume that your tomorrow-self, and day-

after-tomorrow-self, and so on, will act optimally, and so the only decision you have

1Ignore the non-negativity constraint on consumption for the entire problem set.
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to make is how much wealth to pass on, and how much to consume. Thus, an

infinite-period problem is reduced to one with only two - today, and ’the rest of

time’. And correspondingly, there is now just one control variable - consumption

today, which determines wealth tomorrow.

2. Assuming that V / (ωt) > 0 and V // (ωt) < 0 derive the first order condition (FOC)

and the envelope condition (EC). Combine the two to achieve the Euler Equation

(EE) (a relationship between ct and ct+1)

Solution: Note first that we can write the problem as

V (ωt) = max
ct

½
c1−σt

1− σ
+ βV (Rt+1 (ωt − ct) + et+1)

¾
(6)

Then the first order condition is

c−σt = βRt+1V
0 (Rt+1 (ωt − ct) + et+1) (7)

And the envelope condition is

V 0 (ωt) = βRt+1V
0 (Rt+1 (ωt − ct) + et+1) (8)

So V 0 (ωt) = c−σt , and recalling that V (Rt+1 (ωt − ct) + et+1) = V (ωt+1), we can

derive the Euler Equation:

1 = βRt+1

µ
ct+1
ct

¶−σ
(9)

3. Assume that e = 0 so that there is no endowment stream. It turns out that in this

case the value function will take the following form:

V (ωt) = a
ω1−σt

1− σ
(10)

Rewrite (5) substituting in (10) so that V (ωt+1) is a function of ct and ωt. Take

the FOC of this new version of (5) with respect to ct. This should give you a

relationship between ct and ωt.

Solution: If there is no endowment, ωt+1 = Rt+1(ωt − ct). Then, using the hint,
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we have V (ωt+1) = aR1−σt+1
(ωt−ct)1−σ

1−σ , and we can rewrite the Bellman equation as

V (ωt) = max
ct

½
c1−σt

1− σ
+ βaR1−σt+1

(ωt − ct)
1−σ

1− σ

¾
(11)

and the first order condition is

c−σt = βaR1−σt+1 (ωt − ct)
−σ (12)

which, as promised, gives a relationship between ct and ωt.

4. Plug in for ct into the new version of (5). What you should have is an equation

with ωt on both sides. Show without solving explicitly for a, that the initial guess

of for the value function is correct.

Solution: We have
ct =

ωt

1 + (βa)
1
σR

1−σ
σ

t+1

(13)

and so

ωt − ct =
(βa)

1
σR

1−σ
σ

t+1 ωt

1 + (βa)
1
σR

1−σ
σ

t+1

(14)

Plugging these in gives us the following Bellman equation:

V (ωt)=max
ct

("
1

[1 + (βa)
1
σR

1−σ
σ

t+1 ]
1−σ

+ βaR1−σt+1

[(βa)
1
σR

1−σ
σ

t+1 ]
1−σ

[1 + (βa)
1
σR

1−σ
σ

t+1 ]
1−σ

#
ω1−σt

1− σ

)
(15)

=max
ct

("
1

[1 + (βa)
1
σR

1−σ
σ

t+1 ]
1−σ

+ [(βa)
1
σR

1−σ
σ

t+1 ]
σ [(βa)

1
σR

1−σ
σ

t+1 ]
1−σ

[1 + (βa)
1
σR

1−σ
σ

t+1 ]
1−σ

#
ω1−σt

1− σ

)

=max
ct

("
1

[1 + (βa)
1
σR

1−σ
σ

t+1 ]
1−σ

+
(βa)

1
σR

1−σ
σ

t+1

[1 + (βa)
1
σR

1−σ
σ

t+1 ]
1−σ

#
ω1−σt

1− σ

)

=max
ct

½
[1 + (βa)

1
σR

1−σ
σ

t+1 ]
σ ω

1−σ
t

1− σ

¾

and notice that we now have the Bellman equation in the form that we guessed it

should be, so long as we can solve a = [1+(βa)
1
σR

1−σ
σ

t+1 ]
σ. There is a unique solution

to this equation so long as βR1−σt+1 < 1.
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5. (Optional) Assume that βR1−σt+1 < 1 and solve for a. Determine ct as a function of

exogenous parameters.

Solution: Under this assumption, a = [1−β
1
σR

1−σ
σ

t+1 ]
−σ. We can plug this into our

result from the last part to get

ct = ωt(1− β
1
σR

1−σ
σ

t+1 ) (16)

and

ωt+1 = Rt+1(ωt − ct) = (βRt+1)
1
σωt (17)

so

ωt = [(βRt+1)
1
σ ]tω0 (18)

and so now, taking ω0 as an exogenous ’parameter’ (it is given), we have

ct = (1− β
1
σR

1−σ
σ

t+1 )[(βRt+1)
1
σ ]tω0 (19)

6. Consider again the Euler Equation you derived in 1.2 (et = e as before). What

would be the path of consumption if Rβ = 1. Since β is the discount factor and

R is the interest rate, what does this mean? (a simple increase/decrease with a

story is what is required here). What about when Rβ > 1 or Rβ < 1? If you

solved 1.5, do you get the same intuition if you examine the comparative static for

ct as a function of exogenous parameters as in 1.5?

Solution: When Rβ = 1 , ct = ct+1; the path of consumption is perfectly flat.

When Rβ > 1, consumption is increasing; it is decreasing when Rβ < 1. The basic

intuition is thatR tells us what we get from saving, since whatever we don’t consume

grows at this rate. β, on the other hand, tells us how we discount the future. If,

e.g., Rβ > 1, the former effect outweighs the latter, and we prefer to save more now

and consume it later, hence an increasing growth path. The opposite holds when

Rβ < 1, and when Rβ = 1 the two effects are perfectly balanced. Exactly the same

algebra comes out of 1.5 if we assume that R is constant (which, as I noted above,

I should have been doing the whole time!).
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2 Dynamic Optimization in a Stochastic Environment

Consider the same model of savings in a stochastic setting where a consumer maximizes

the following program:

max
{ct}∞t=0

E
∞X
t=0

βt
c1−σt

1− σ
(20)

s.t. ωt= et +Rtbt, ωt = ct + bt+1 (21)

ω0> 0 given, et ∼ i.i.d
¡
e, σ2e

¢
, Rt = i.i.d

¡
R, σ2R

¢
(22)

and σ> 0, σ 6= 1 (23)

et represents endowment, bt represents bond holdings, and Rt is the interest rate. ωt can

be interpreted as cash in hand (money you make from endowment plus wealth).

1. Note that ωt+1 = Rt (ωt − ct) + et+1 so that we can ignore {bt}∞t=0 altogether as
before. Explain in words, why we can rewrite the problem in the following form

Bellman Equation:

V (ωt) = max
ct

½
c1−σt

1− σ
+ βEV (ωt+1)

¾
(24)

What would happen to the above value functions if et and Rt were each Markov

as opposed to i.i.d? (This means that et’s c.d.f. would depend on et−1 and Rt’s

c.d.f. would depend on Rt−1 where e ⊥ R. The answer here should be a very quick

manipulation of (24)

Solution: The intuitive explanation for why we can write the problem in recursive
form is exactly the same as it was in Question 1, with the added caveat that there is

now uncertainty about V (ωt+1), through the randomness characterizing the interest

rate and endowment shock. The Markov adjustment would give

V (ωt, et, Rt) = max
ct

½
c1−σt

1− σ
+ βE[V (ωt+1, et+1, Rt+1) |et, Rt]

¾
(25)

which simply expresses the idea that now we are taking a conditional expectation,

using information from the past period.

2. Assuming that V / (ωt) > 0 and V // (ωt) < 0 derive the first order condition (FOC)

and the envelope condition (EC). Combine the two to achieve the Euler Equation

(EE) (a relationship between ct and ct+1)
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Solution: Note first that we can write the problem as

V (ωt) = max
ct

½
c1−σt

1− σ
+ βEV (Rt+1 (ωt − ct) + et+1)

¾
(26)

Then the first order condition is

c−σt = βE[Rt+1V
0 (Rt+1 (ωt − ct) + et+1)] (27)

And the envelope condition is

V 0 (ωt) = βE[Rt+1V
0 (Rt+1 (ωt − ct) + et+1)] (28)

So V 0 (ωt) = c−σt , and recalling that V (Rt+1 (ωt − ct) + et+1) = V (ωt+1), we can

derive the Euler Equation:

1 = βE

"
Rt+1

µ
ct+1
ct

¶−σ#
(29)

3. Assume that e = 0 and σ2e = 0 so that there is no endowment stream. It turns out

that in this case the value function will take the following form exactly as in the

deterministic case:

V (ωt) = a
ω1−σt

1− σ
(30)

Rewrite (24) substituting in (30) so that V (ωt+1) is a function of ct and ωt. LeteRt+1 =
¡
ER1−σt+1

¢1/(1−σ)
. Take the FOC of this new version of (24) with respect to

ct. This should give you a relationship between ct and ωt similar to the one you

achieve in 1.3. It should be apparent that the solution to this value function is

similar as in the deterministic case.

Solution: We have V (ωt+1) = aR1−σt+1
(ωt−ct)1−σ

1−σ , and we can rewrite the Bellman

equation as

V (ωt)=max
ct

½
c1−σt

1− σ
+ βE[aR1−σt+1

(ωt − ct)
1−σ

1− σ
]

¾
(31)

=max
ct

½
c1−σt

1− σ
+ β eR1−σt+1 a

(ωt − ct)
1−σ

1− σ

¾
(32)
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and the first order condition is

c−σt = β eR1−σt+1 a(ωt − ct)
−σ (33)

Note that the only uncertainty now is over the path of the interest rate.

4. Consider again the Euler Equation you derived in 2.2 (and let et be stochastic as

before). What would the path of consumption be now if Rβ = 1 and σ2R = 0 so that

the interest rate is non-stochastic? (Use Jensen’s Inequality to relate ct to E (ct+1))

Solution: The Euler Equation now becomes

c−σt = E
£
c−σt+1

¤
> (E [ct+1])

−σ (34)

Where the last inequality follows from Jensen’s inequality with σ > 0 (marginal

utility is strictly convex). So we have Et[ct+1] > ct, that is, we need Rβ < 1 to

obtain zero expected growth in consumption.
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