14.102 Problem Set 1

Due Thursday, September 22, in class

- 1. Lecture Notes Exercise 12: Show that \mathbb{Q} , the set of real rational numbers, does not have the least upper-bound property.
- 2. Is the set of real irrational numbers countable?
- 3. For $x \in \mathbb{R}^1$ and $y \in \mathbb{R}^1$, define

(a)
$$d_1(x,y) = (x-y)^2$$

(b)
$$d_2(x,y) = |x - 2y|$$

(c) $d_3(x,y) = \frac{|x-y|}{1+|x-y|}$

Determine for each of these whether it is a metric or not.

- 4. Lecture Notes Exercise 37: Prove that the only limit point of a convergent sequence is its limit.
- 5. Show that if a sequence $\{x_n\}$ satisfies the Cauchy criterion, then it is bounded.
- 6. Let E^{o} denote the set of all interior points of a set E (also called the interior of E).
 - (a) Prove that E^o is always open.
 - (b) Prove that E is open if and only if $E = E^{o}$.
 - (c) If $G \subset E$ and G is open, prove that $G \subset E^o$.
 - (d) Prove that the complement of E^o is the closure of the complement of E.
- 7. Let f be a continuous real function on a metric space X. Let Z(f) be the set of all $p \in X$ at which f(p) = 0. Prove that Z(f) is closed.
- 8. Prove that every Cobb-Douglas Function $F(x, y) = Ax^a y^b$ with A, a, and b all positive is quasiconcave.