
14.102 Problem Set 1 Solutions

1. Lecture Notes Exercise 12: Show that Q, the set of real rational numbers,
does not have the least upper-bound property.

Solution: To show this, we must show that there exists a set E ⊂ Q such
that E is nonempty and bounded above, but for which supE does not
exist in Q. One example of such a set E is {x ∈ Q : x2 < 2}. This is
clearly nonempty and bounded above (by any member of Q greater than√
2), and yet this set has no least upper bound, hence no supremum. For

consider the set of all positive rationals x such that x2 > 2. This is
precisely the set of upper bounds of E in Q (note well, that, crucially, the
real number x such that x2 = 2 does not belong to Q; indeed, we could
be doing exactly this proof using any irrational number in place of

√
2).

I claim that this set (call it F ) has no least element: for every p ∈ F , we
can find another q ∈ F such that q < p.

To do this, associate with every positive rational number p the number

q = p− p2 − 2
p+ 2

=
2p+ 2

p+ 2

Note first that all such b are positive. Note also that subtracting
√
2 from

both sides gives

q −
√
2 =

(p−
√
2)(2−

√
2)

p+ 2

So pick a p ∈ F . Then the associated q is positive, but because p2 − 2 is
also positive, we know that q < p. At the same time, knowing that p−

√
2

is positive implies that q−
√
2 is too, and so we have shown that q ∈ F , as

we wanted to. Thus, we have shown that the set of upper bounds for E
has no least element in Q, which is the same as saying that supE does not
exist in Q, implying that Q does not have the least-upper-bound property.

2. Is the set of real irrational numbers countable?

Solution: No. This follows immediately from the facts (noted in class
and shown in the lecture notes) that the reals are uncountable and the
rationals are countable. Since the reals are the union (indeed, finite union)
of the rationals and irrationals, the irrationals cannot be countable; if they
were, we would have to conclude that the reals were countable (being the
finite union of two countable sets), and they are not.

3. For x ∈ R1 and y ∈ R1, define

(a) d1(x, y) = (x− y)2

(b) d2(x, y) = |x− 2y|
(c) d3(x, y) =

|x−y|
1+|x−y|
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Determine for each of these whether it is a metric or not.

Solution:

(a) d1(x, y) is not a metric; it fails the triangle inequality. Consider
x = 2, y = 1, z = 0; then (x− y)2+(y− z)2 = 2, while (x− z)2 = 4.

(b) d2(x, y) is also not a metric, for d2(1, 0) = 1 6= 2 = d2(0, 1).

(c) d3(x, y) is a metric. It is helpful to note that |x− y| is itself a metric;
it is therefore nonzero and positive for distinct x and y, zero for x = y,
and |x− y| = |y − x|, which implies that d3(x, y) is itself nonzero and
positive for distinct x and y, zero for x = y, and d3(x, y) = d3(y, x).
It remains to check the triangle inequality.
We want to show that

|x− y|
1 + |x− y| +

|y − z|
1 + |y − z| ≥

|x− z|
1 + |x− z|

Let |x− y| = a, |y − z| = b, |x− z| = c. Then we want to show

a

1 + a
+

b

1 + b
− c

1 + c
≥ 0

a(1 + b)(1 + c) + b(1 + a)(1 + c)− c(1 + a)(1 + b)

(1 + a)(1 + b)(1 + c)
≥ 0

Note that the denominator is positive because a, b, and c are all
distances, and thus positive. So we just want to show that the
numerator is positive. It reduces to a+ b− c+ 2ab+ abc. The last
two terms are clearly positive; moreover, because a, b, and c satisfy
the triangle inequality we know that

a+ b− c = |x− y|+ |y − z|− |x− z| ≥ 0

and so we know that the numerator is positive. This shows that
d3(x, y) satisfies the triangle inequality; it is a metric.

4. Lecture Notes Exercise 37: Prove that the only limit point of a convergent
sequence is its limit.

Solution: Consider a convergent sequence xn → x; we want to show that
x is the only limit point of the sequence. So consider a limit point of
the sequence, a. On the one hand, we know that for any ε > 0, and
for any N , there is an n ≥ N such that |xn − a| < ε, because a is a
limit point. On the other hand, we also know that for any ε > 0, there
exists an N - let’s call it Nε - such that for any n ≥ Nε, |xn − x| < ε,
because x is the limit of the sequence. Putting these two facts together
with the triangle inequality, we know that there is an n ≥ Nε such that
|x− a| ≤ |x− xn|+ |xn − a| = |x− xn|+ |a− xn| < 2ε, which establishes
that a = x for this limit point. Of course, the choice of a was arbitrary,
and so this holds for all limit points, which is what we wanted to show.
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5. Show that if a sequence {xn} satisfies the Cauchy criterion, then it is
bounded.

Solution: We know that {xn} is such that for every ε, there is an N
such that d(xm, xn) < ε if m,n ≥ N . This is then true for d(xN , xn) for
n ≥ N . This and the triangle inequality imply that for any ε > 0 and
for all n ≥ N, d(xn, 0) ≤ d(xN , 0) + d(xN , xn) < d(xN , 0) + ε, which is
sufficient to bound the subsequence {xn}∞n=N (take any number strictly
greater than |xN |). To show that the sequence as a whole is bounded,
simply choose C > max{max{|xn|}N−1n=1 , |xN |}, and it is the case that for
all n, C > |xn| .

6. Let Eo denote the set of all interior points of a set E (also called the
interior of E).

(a) Prove that Eo is always open.
Solution: If Eo is open, then it is the case that for every point
x0 ∈ Eo, one can choose a small enough ε > 0 such that Bε(x0) ⊂ Eo

(not merely E, which is given by the fact that Eo consists entirely
of interior points of E). Suppose this is not the case; suppose that
there is some point x0 ∈ Eo such that ∀ε > 0, Bε(x0) contains points
which are in E\Eo (that is, points which are in E but not Eo - if
there are no such points, this means merely that E had no interior
points to begin with, so that Eo is the empty set, which is both open
and closed, and we’re done). Consider one of these points; call it x1.
Now, because x1 is not an interior point of E, we know that ∀ε > 0,
Bε(x1) containts points which aren’t in E. But now, pick any ε > 0,
and we know that there is an x1 ∈ E\Eo such that d(x0,x1) < ε

2 ,
and a point x2 /∈ E such that d(x1, x2) < ε

2 , and then by the triangle
inequality d(x0, x2) < ε

2 +
ε
2 = ε, which is to say that any open ball

Bε(x0) contains points which are not in E, a contradiction of the
initial hypothesis that x0 ∈ Eo. This completes the proof.

(b) Prove that E is open if and only if E = Eo.
Solution: We have just shown that E is open if E = Eo, because
Eo is always open. It remains to show that E = Eo if E is open.
But this is immediate, since if E is open then it consists entirely of
interior points.

(c) If G ⊂ E and G is open, prove that G ⊂ Eo.
Solution: If G is open, then for any g0 ∈ G we can construct a small
enough open ball Be(g0) ⊂ G ⊂ E, which implies that every g0 is an
interior point of E, i.e. that G ⊂ Eo.

(d) Prove that the complement of Eo is the closure of the complement
of E.
Solution: Denote the closure of a set A as A ≡ A ∪ A0, where A0 is
the set of all limit points of A.
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First we’ll show that (Eo)c ⊂ Ec. Consider x0 ∈ (Eo)c. Then x0 is
not an interior point of E. If x0 is not in E at all, then x0 ∈ Ec ⊂ Ec.
If, on the other hand, x0 ∈ E, then by virtue of the fact that it is
not interior to E, we know that for any ε > 0,∃x1 ∈ Ec such that
x1 ∈ Bε(x0), which is precisely to say that x0 is a limit point of Ec,
x0 ∈ Ec0 ⊂ Ec. Since this argument holds for all points of (Eo)c, we
have shown that (Eo)c ⊂ Ec, as desired.
Second we show the other set inclusion: Ec ⊂ (Eo)c. Once again
we have two cases. If x0 ∈ Ec, then it is clearly not an interior
point of E, which is to say that x0 ∈ (Eo)c. On the other hand, if
x0 is a limit point of Ec, then for any ε > 0,∃x1 ∈ Ec such that
x1 ∈ Bε(x0), which also implies that x0 is not an interior point of
E. Once again this argument covers all points in Ec, and so we have
shown that Ec ⊂ (Eo)c. Together the two set inclusions imply set
equality, which completes the proof that (Eo)c = Ec.

7. Let f be a continuous real function on a metric space X. Let Z (f) be
the set of all p ∈ X at which f (p) = 0. Prove that Z (f) is closed.

Solution: We will show that Z(f) contains all of its limit points. First
note that if there are no p ∈ X such that f(p) = 0, then Z(f) is empty,
and the empty set is closed. Suppose then that Z(f) is nonempty, but
has no limit points. Then all points of Z(f) are isolated points, and we
know of a set of isolated points that one can never center an open ball of
any radius ε > 0 such that the open ball is contained in the set of isolated
points - for this would imply that the point was not an isolated point at
all, but a limit point. Thus, in this case Z(f) is closed as well. Suppose
therefore that Z(f) is nonempty and does have limit points; again, we will
show that all these limit points are contained in Z(f).

Suppose then that p0 is a limit point of Z(f). We want to show that
f(p0) = 0. Because f is continuous, we know that ∀p,∈ X, and ∀ε > 0,
∃δ > 0 such that if p0 ∈ Bδ(p), then f(p0) ∈ Bε(f(p)). On the other hand,
because p0 is a limit point of Z(f), we know that ∃p ∈ Z(f) such that
p 6= p0 but p ∈ Bδ(p0) (this would be true for any δ0 > 0; it is therefore
true for the δ we used earlier). Putting the two together, we see that
f(p0) ∈ Bε(f(p)) for arbitrarily small ε > 0. This argument holds for all
limit points of Z(f), and so is sufficient to complete the proof.

8. Prove that every Cobb-Douglas Function F (x, y) = Axayb with A, a, and
b all positive is quasiconcave.

Solution: As noted in an email, I omitted the assumption that F is defined
only over the positive quadrant {(x, y) : x > 0, y > 0}.
It is easiest to solve this problem by noting that any concave function
is quasiconcave, and that quasiconcavity is preserved under monotonic
transformation. Therefore, if we can write a Cobb-Douglas function as
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a monotonic transformation of a concave function, then it must be qua-
siconcave. The first two facts were stated (though not proved) in class,
and you could have taken them as given, but I’ll go through all the steps
here.

First, let’s show that concavity implies quasiconcavity. Suppose that
f defined on a convex subset U in Rn is concave. Such an f satisfies
f(λx+(1−λ)y) ≥ λf(x)+(1−λ)f(y) for any x, y ∈ U and 0 < λ < 1. We
will show that this means that f(x) ≥ f(y) implies f(λx+(1−λ)y) ≥ f(y),
again for any x, y ∈ U and 0 < λ < 1. So suppose that we have chosen x
and y such that f(x) ≥ f(y). Then we have

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) ≥ λf(y) + (1− λ)f(y) = f(y)

Second, we want to show that quasiconcavity is preserved under monotonic
transformation. Suppose that g is a monotonically increasing transfor-
mation of f (i.e., g = h ◦ f , where h is monotonically increasing - the
argument where h, and therefore g, is decreasing is similar), and f is qua-
siconcave. Let us again suppose that we have chosen x and y such that
f(x) ≥ f(y). Then

g(λx+ (1− λ)y) = (h ◦ f)(λx+ (1− λ)y) ≥ (h ◦ f)(y) = g(y)

Finally, we want to show that we can always write a Cobb-Douglas func-
tion as a monotonic transformation of a concave function. The key here
is to note that a Cobb-Douglas function with decreasing returns to scale
is concave. This is most easily shown when we write

G(x, y) = logA+ a log x+ b log y

Then the function is concave (∂
2G
∂x2 = −

a
x2 ,

∂2G
∂y2 = − b

y2 , and
∂2G
∂x∂y = 0;

later we will give a more general version of the second order conditions
for concavity, but in this case it is clear). This, by the way, is where
the assumption that F is defined only over the positive quadrant comes
into play; G is undefined for x or y negative. Note that we very often
represent a Cobb-Douglas function in this way without even considering
that in doing so, we may be using a concave function to represent one
which is convex. But this is for good reason: we’re not interested in
preserving concavity, only quasiconcavity, for this is all we need to deliver
the convex demand correspondences needed for utility theory.

Now, let us apply a monotonically increasing transformation to G - the
exponential function: exp{G(x, y)} = Axayb = F (x, y). Thus, we can
write any such Cobb-Douglas function as a monotonic transformation of
a concave (also Cobb-Douglas) function, which proves that the function
is quasiconcave. It is precisely because quasiconcavity is preserved under
monotonic transformation that we can switch between the exponential and
log-linear utility function without worrying about disturbing its ordinal
properties.
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