14.102 Problem Set 2

Due Thursday, October 6, in class

1. Lecture Notes Exercise 105: Given an $m \times n$ matrix A, show that $S(B) \subseteq$ $S(A)$ and $N\left(A^{\prime}\right) \subseteq N\left(B^{\prime}\right)$ whenever $B=A X$ for some matrix X. What is the geometric interpretation? (Note: this is a repeat from last year's problem set; as such, the solution is right on the website. It is certainly worth doing, but the main reason I included it was to draw your attention to the result, which can be used to make part (e) of the next problem much less tedious.)
2. Let $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & -1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 0 \\ 0 & 2 \\ -1 & 1\end{array}\right)$
(a) Find $C=A B$
(b) Find rank C
(c) Find $\operatorname{det} C$
(d) Find $D=B A$
(e) Find rank D (reminder: try to answer this using the result of problem 1 - without calculations)
(f) Find $\operatorname{det} D$
(g) Is C invertible? If so, find C^{-1}
(h) Is D invertible? If so, find D^{-1}
(i) Find eigenvalues of C
(j) Solve the following two linear systems (Hint: you will need no extra calculations!):
i. $\left\{\begin{array}{l}\frac{1}{7} x+\frac{6}{7} y=1 \\ \frac{1}{7} x-\frac{1}{7} y=0\end{array}\right.$
ii. $\left\{\begin{array}{l}\frac{1}{7} u+\frac{6}{7} v=0 \\ \frac{1}{7} u-\frac{1}{7} v=1\end{array}\right.$
3. Look at last year's problem set $1, \# 3$, and its solution. It is good to understand the notion of changing bases, and of the coordinates of a vector with respect to a basis (we will use it again in discussing diagonalization). In particular, do Lecture Notes Exercise 114: what are the coordinates of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ with respect to the following bases?
(a) $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$, assuming $\alpha \delta-\beta \gamma \neq 0$.
4. Prove Lemma 116 (note the hint in the lecture notes): Let $\left\{e_{j}\right\}=$ $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for \mathbb{X}, and let $\left\{b_{j}\right\}=\left\{b_{1}, \ldots, b_{m}\right\}$ be any set of vectors belonging to \mathbb{X} with $m>n$. Then $\left\{b_{j}\right\}$ can not be linearly independent.
5. Lecture Notes Exercise 124: Using the 'fundamental theorem of algebra' and the fact that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)$, show that

$$
\begin{aligned}
\operatorname{rank}(A)+\operatorname{null}\left(A^{\prime}\right) & =m \\
\operatorname{null}(A)-\operatorname{null}\left(A^{\prime}\right) & =n-m
\end{aligned}
$$

6. Lecture Notes Exercise 129: Using the properties of transpose and inverse:
(a) Prove that $A^{-k}=\left(A^{k}\right)^{-1}$
(b) Consider the matrix $Z=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ where X is an arbitrary $m \times n$ matrix. Under what conditions on X is Z well-defined? Show that Z is symmetric. Also show that $Z Z=Z$ (i.e., that Z is idempotent).
(Note: this is another repeat, but this one I included simply because it really is worth doing - you will use these facts, and the techniques needed to prove them, a LOT in statistics and econometrics, so it would be helpful to get them down now.)
7. Lecture Notes Exercise 150: Show that, if $[A, b]$ is singular, then and only then $X^{*} \neq \emptyset$, and further $\operatorname{dim}\left(X^{*}\right)=\operatorname{null}[A, b]-1$.
8. Calculate e^{A} for A equal to
(a) $\left(\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right)$ (hint: diagonalize!)
(b) $\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 6 \\ 0 & 0 & 0\end{array}\right)$ (hint: start with A^{2}, and recall that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$)
9. Lecture Notes Exercise 182: Let X be an $m \times n$ matrix with $m \geq n$ and $r k(X)=n$. Show that $X^{\prime} X$ is positive definite.
10. Lecture Notes Exercise 183: Show that a positive definite matrix is nonsingular.
(Conclude from the past two exercises that so long as $m \geq n$ and $r k(X)=$ n - as you will generally assume when you estimate systems of equations - that you don't need to wonder whether the term $\left(X^{\prime} X\right)^{-1}$ is defined.)
