
14.102 Problem Set 2 Solutions

1. Lecture Notes Exercise 105: Given an m×n matrix A, show that S(B) ⊆
S(A) and N(A0) ⊆ N(B0) whenever B = AX for some matrix X. What
is the geometric interpretation? (Note: this is a repeat from last year’s
problem set; as such, the solution is right on the website. It is certainly
worth doing, but the main reason I included it was to draw your attention
to the result, which can be used to make part (e) of the next problem much
less tedious.)

Solution: Suppose X is n× l. Then B is m× l. We have S(A) = {y ∈
Rm|y = Ax for some x ∈ Rn}, and S(B) = {y ∈ Rm|y = Bx for some
x ∈ Rl}. We want to show that any y ∈ S(B) belongs to S(A) as well.
We have y = Bx = AXx = Az, where z = Xx, z ∈ Rn, implying that
y ∈ S(B) =⇒ y ∈ S(A).

For the second part, recall that N(A0) = {x ∈ Rm|A0x = 0}, and N(B0) =
{x ∈ Rm|B0x = 0}. We want to show that x ∈ N(A0) ⇒ x ∈ N(B0),
and the proof is similar to the previous part: if A0x = 0, then we have
B0x = X 0A0x = 0.

The main ’geometric’ intuition to take from this is that if we construct
the matrix B as AX, then each of its columns is a linear combination of
the columns in A, weighted by the elements of a column of X (make sure
you understand why this is true). This being the case, its columns cannot
span any subspace of Rm which is not spanned by A. The intuition for
the second part is the reverse, using the same reasoning: any vector not
spanned by A cannot be spanned by B.

2. Let A =

µ
1 3 0
2 −1 1

¶
and B =

⎛⎝ 1 0
0 2
−1 1

⎞⎠
(a) Find C = AB

Solution: C =

µ
1 6
1 −1

¶
(b) Find rank C

Solution: 2 (its columns are linearly independent)

(c) Find det C
Solution: −7

(d) Find D = BA

Solution: D =

⎛⎝1 3 0
4 −2 2
1 −4 1

⎞⎠
(e) Find rank D (reminder: try to answer this using the result of prob-

lem 1 - without calculations)
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Solution: Any two columns of D are linearly independent, so rankD
is at least two. But on the other hand, the result from problem 1
tells us that D is a subspace of the span of A and of B. Another
way of saying this is that its rank can be no greater than either of
the matrices we multiplied together to obtain it. Thus, rankD = 2.

(f) Find det D
Solution: detD = 0, since D is not full rank.

(g) Is C invertible? If so, find C−1

Solution: C−1 =

µ
1
7

6
7

1
7 −17

¶
(h) Is D invertible? If so, find D−1

Solution: D is not invertible, since it is not full rank.

(i) Find eigenvalues of C

Solution: We have

¯̄̄̄
1− λ 6
1 −1− λ

¯̄̄̄
= (1− λ) (−1−λ)−6 = λ2−7 =

0⇒ λ = ±
√
7.

(j) Solve the following two linear systems (Hint: you will need no extra
calculations!):

i.
½

1
7x+

6
7y = 1

1
7x−

1
7y = 0

ii.
½

1
7u+

6
7v = 0

1
7u−

1
7v = 1

Solution: We can collect these equations into one system asµ
1
7

6
7

1
7 −17

¶µ
x u
y v

¶
=

µ
1 0
0 1

¶
C−1

µ
x u
y v

¶
= Iµ

x u
y v

¶
= C

This means that x = 1, y = 1, u = 6, v = −1.

3. Look at last year’s problem set 1, #3, and its solution. It is good to
understand the notion of changing bases, and of the coordinates of a vector
with respect to a basis (we will use it again in discussing diagonalization).
In particular, do Lecture Notes Exercise 114: what are the coordinates
of
£
1
0

¤
and

£
0
1

¤
with respect to the following bases?

Solution. Notice that we can collect these two vectors and appeal to
Lemma 112, recalling that if E is a basis for a vector space, then so is
F = EP for any nonsingular P , and that P then gives the coordinates

of F with respect to E. In this case, we have
∙
1 0
0 1

¸
= EP , where we
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are given the basis E and asked to find P - but of course, P is simply the
inverse of E, and its first column gives the coordinates of

£
1
0

¤
with respect

to E and its second gives the coordinates of
£
0
1

¤
with respect to E.

(a)
∙
1 −1
1 1

¸
Solution: P =

∙
1
2

1
2

−12
1
2

¸
(b)

∙
3 −1
2 5

¸
Solution: P =

∙
5
17

1
17

− 2
17

3
17

¸
(c)

∙
0 1
2 0

¸
Solution: P =

∙
0 1

2
1 0

¸
(d)

∙
α β
γ δ

¸
, assuming αδ − βγ 6= 0.

Solution: P = 1
αδ−βγ

∙
δ −β
−γ α

¸
4. Prove Lemma 116 (note the hint in the lecture notes): Let {ej} =
{e1, ..., en} be a basis for X, and let {bj} = {b1, ..., bm} be any set of
vectors belonging to X with m > n. Then {bj} can not be linearly inde-
pendent.

Solution: Write E = [ej ] and B = [bj ]. Since E is a basis for X, any
bj can be written as a linear combination of the ej ’s: bj =

Xn

i=1
cijei.

Note the meaning of the subscripts here. There are n elements of [ej ],
and they are being summed up, weighted by n scalars c1j , ..., cnj ; i indexes
each of these products in the sum. j simply identifes the jth element of
b, and refers in cij to the jth set of scalars c1j , ..., cnj; in general, there
will be a different set of scalars for each bj . Now, we can rewrite what we
have so far as B = EC, where C is the n×m matrix collecting the scalar
weights.

Now suppose the columns of B are linearly independent. Then for any
x ∈ Rm, x 6= 0, Bx 6= 0. Then we have

Bx = ECx = Eλ 6= 0

where λ = Cx, λ ∈ Rn. The fact that Eλ 6= 0 implies that λ = Cx 6= 0.
Since this must be true for all x 6= 0, this implies that the columns of C
are linearly independent. But we know that any set of m vectors from
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Rn must admit at least one linear independence if m > n, and so this is a
contradiction; thus, the columns of B cannot be linearly independent.

Another way to show this would be to note that the columns of B are
linearly independent only if the columns of C are linearly independent (for
otherwise there would be a linear dependence among the sets of weights
used to construct the columns of B from the basis E). But again, the m
columns of C, which are elements of Rn, cannot be linearly independent,
and so neither can the columns of B.

5. Lecture Notes Exercise 124: Using the ’fundamental theorem of algebra’
and the fact that rank(A) = rank(A0), show that

rank(A) + null(A0) = m

null(A)− null(A0) = n−m

Solution: The fundamental theorem of algebra says that for any m × n
matrix A,

rank(A) + null(A) = n

Similarly,
rank(A0) + null(A0) = m

Then the conclusions are immediate - simply replace rank(A0) with rank(A)
in the second expression to get

rank(A) + null(A0) = m

and subtract the second expression from the first to get

rank(A) + null(A)− rank(A0)− null(A0) = null(A)− null(A0) = n−m

6. Lecture Notes Exercise 129: Using the properties of transpose and inverse:

(a) Prove that A−k = (Ak)−1

Solution: A−k = (A−1)k = A−1A−1 · · ·A−1 (k times) = (Ak)−1 by
the property that (AB)−1 = B−1A−1.

(b) Consider the matrix Z = X(X 0X)−1X 0 whereX is an arbitrarym×n
matrix. Under what conditions onX is Z well-defined? Show that Z
is symmetric. Also show that ZZ = Z (i.e., that Z is idempotent).
Solution: (X 0X) must be invertible. This can only be the case if
n ≤ m (why?) and if rankX = n.

To show that Z is symmetric, note that (X 0X) is symmetric, and
hence so is (X 0X)−1 (why?). Now Z0 = (X(X 0X)−1X 0)0 = X 00(X 0X)−10X 0 =
X(X 0X)−1X 0 = Z.

To show that Z is idempotent, we check that ZZ = (X(X 0X)−1X 0)(X(X 0X)−1X 0) =
X(X 0X)−1(X 0X)(X 0X)−1X 0 = X(X 0X)−1IX 0 = X(X 0X)−1X =
Z.
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(Note: this is another repeat, but this one I included simply because it
really is worth doing - you will use these facts, and the techniques needed
to prove them, a LOT in statistics and econometrics, so it would be helpful
to get them down now.)

7. Lecture Notes Exercise 150: Show that, if [A, b] is singular, then and only
then X∗ 6= ∅, and further dim(X∗) = null[A, b]− 1.
Solution: Unfortunately, there was a typo here that I only noticed at the
last second. I needed to include (for the first part) the condition that
rank([A, b]) = rank(A) (or I could have simply replaced [A, b] singular
with that).

This is one case where we can construct a chain of equivalences to complete
the proof, rather than showing one direction at a time. X∗ 6= ∅ ⇔ b ∈
S(A)⇔ rank([A, b]) = rank(A)⇔ [A, b] is singular.

Note that we can move from left to right without the added condition,
but not from right to left: it is possible for [A, b] to be singular but
rank([A, b]) 6= rank(A); more to the point, it is possible for [A, b] to be
singular but for X∗ to nevertheless be empty. This is the case if A is itself
singular and b does not lie in the span ofA, so that rank([A, b]) > rank(A),
but b cannot be written as a linear combination of the columns of A. For
example, suppose A is the identity matrix, except that the last column
has all zeroes instead of a one at the bottom, and b is a column of zeroes
except for its last element, which is one. Then [A, b] is singular, but
b /∈ S(A).

For the second claim, note that the dimension of the space spanned by the
solutions to the homogenous system [A, b]y = 0 is simply null[A, b]. Fixing
the last coordinate of each of these solutions to be −1 describes a hyper-
plane of dimension one less than this space, so dim(X∗) = null[A, b]− 1.
We could also use the fundamental theorem of linear algebra:

rank([A, b]) + null([A, b]) = n+ 1

null([A, b])− 1 = n− rank(A) = dim(X∗)

8. Calculate eA for A equal to

(a)
µ

2 1
−4 −2

¶
(hint: diagonalize!)

Solution: a typo here means that in fact, A is not diagonalizable.

However, the hint given in the next part works: since A2 =
µ
0 0
0 0

¶
,

we have that eA = I +A =

µ
3 1
−4 −1

¶
Just to give an example of how to do this with a diagonalizable

matrix, suppose A were
µ
2 1
−3 −2

¶
. This yields two eigenvalues,
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1 and −1, with the associated eigenvectors
∙
1
−1

¸
and

∙
1
−3

¸
. So

we have Λ =

∙
1 0
0 −1

¸
and V =

∙
1 1
−1 −3

¸
, which in turn gives

V −1 =

∙
3
2

1
2

−12 −12

¸
. Then eA =

∙
1 1
−1 −3

¸ ∙
e 0
0 e−1

¸ ∙
3
2

1
2

−12 −12

¸
.

(b)

⎛⎝ 0 1 2
0 0 6
0 0 0

⎞⎠ (hint: start with A2, and recall that ex =
P∞

n=0
xn

n! )

Solution: A2 =

⎛⎝0 0 6
0 0 0
0 0 0

⎞⎠ , and A3 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ , so eA = I +

A+ A2

2 =

⎛⎝1 1 5
0 1 6
0 0 1

⎞⎠
9. Lecture Notes Exercise 182: Let X be an m× n matrix with m ≥ n and

rk(X) = n. Show that X 0X is positive definite.

Solution: X 0X is a symmetric n × n matrix, with rank n (this latter
part follows from the result of problem 1, and implies that X 0X is full
rank). Choose any nonzero y ∈ Rn; then y0X 0Xy = (Xy)0Xy = z0z,

where z = Xy is an m× 1 vector. Since z0z =
Xm

i=1
z2i , we are done so

long as we know that we don’t have zi = 0 for all i. But this cannot be
the case; if z = Xy = 0, then we have X 0Xy = 0, but because X 0X is
full rank, for nonzero y, X 0Xy 6= 0. Thus, y0X 0Xy > 0 for all nonzero y,
which is the definition of positive definiteness.

10. Lecture Notes Exercise 183: Show that a positive definite matrix is non-
singular.

Solution: We know that such a matrix has all eigenvalues strictly positive;
moreover, we know that its determinant is the product of these eigenvalues,
which can thus not be zero, and so the matrix is nonsingular.

(Conclude from the past two exercises that so long as m ≥ n and rk(X) =
n - as you will generally assume when you estimate systems of equations
- that you don’t need to wonder whether the term (X 0X)−1 is defined.)
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