14.102 Problem Set 3

Due Tuesday, October 18, in class

- 1. Lecture Notes Exercise 208: Find $\int_a^b \log(t) dt$, where 0 < a < b are real numbers.
- 2. (Sundaram 4.4, page 110) Find and classify all critical points (local maximum, local minimum, neither) of the following function: $f(x,y) = e^{2x}(x+y^2+2y)$. For local optima that you find figure out whether they are also global optima.
- 3. (Simon and Blume 18.7, page 423): Find the max and min of f(x, y, z) = yz + xz subject to $y^2 + z^2 = 1$ and xz = 3
- 4. (Simon and Blume 18.11, page 434): Maximize $f(x, y) = 2y^2 x$, subject to $x^2 + y^2 \le 1, x \ge 0, y \ge 0$.
- 5. Let $F(x, y) = 2x^2 + 2y^2 + 8$ and $G(x, y) = x^2 + 2y^2 6x 7$. Note: this problem will be much easier and less tedious if you stop now and think about what these functions 'look like'.
 - (a) State the implicit function theorem. Find all points on the curve G(x, y) = 0 around which either y is not expressible as a function of x or x is not expressible as a function of y. Compute y'(x) along the curve at the origin.
 - (b) Find all unconstrained optima of F and G on \mathbb{R}^2 . Is the Weierstraß theorem applicable?
 - (c) Maximize and minimize $d(x, y) = \sqrt{x^2 + y^2}$ subject to $G(x, y) \le 0$. Does Weierstraß apply?
 - (d) Maximize and minimize F(x, y) subject to G(x, y) = 0. Is the Weierstraß theorem applicable?
 - (e) Maximize and minimize F(x, y) subject to $G(x, y) \leq 0$. Is the Weierstraß theorem applicable?
 - (f) Maximize and minimize F(x, y) subject to $G(x, y) \ge 0$. Is the Weierstraß theorem applicable?
- 6. (Simon and Blume 20.1, page 493): Which of the following functions are homogeneous? What are the degrees of homogeneity of the homogeneous ones?
 - (a) $3x^5y + 2x^2y^4 3x^3y^3$
 - (b) $x^{1/2}y^{-1/2} + 3xy^{-1} + 7$
 - (c) $x^{3/4}y^{1/4} + 6x$

(d)
$$\frac{(x^2 - y^2)}{(x^2 + y^2)} + 3$$

- 7. (Simon and Blume 20.6, page 493): Prove that if f and g are functions on \mathbb{R}^n that are homegeneous of different degrees, then f + g is not homogeneous.
- 8. Many utility functions we work with exhibit diminishing marginal returns (i.e., they are concave in each of their arguments, $\frac{\partial^2 u}{\partial x_i^2} < 0$). Is this an ordinal property? Why or why not?
- 9. Show that the following functions are homothetic:
 - (a) $e^{x^2y}e^{xy^2}$
 - (b) $2\log x + 3\log y$
 - (c) $x^3y^6 + 15x^2y^4 + 75xy^2 + 125$