
14.102 Problem Set 3

Due Tuesday, October 18, in class

1. Lecture Notes Exercise 208: Find
R b
a
log(t)dt , where 0 < a < b are real

numbers.

Solution: This can be solved by integration by parts. Let F (t) =
t, F 0(t) = f(t) = 1, G(t) = log(t), G0(t) = g(t) = 1

t ; thenZ b

a

log(t)dt =

Z b

a

f(t)G(t)dt = [F (b)G(b)− F (a)G(a)]−
Z b

a

F (t)g(t)dt

= [b log(b)− a log(a)−
Z b

a

1 · dt

= (b log(b)− a log a)− (b− a)

= b(log(b)− 1)− a(log(a)− 1)

2. (Sundaram 4.4, page 110) Find and classify all critical points (local max-
imum, local minimum, neither) of the following function: f(x, y) =
e2x(x+ y2 + 2y). For local optima that you find figure out whether they
are also global optima.

Solution: Critical points solve
½

e2x(2x+ 2y2 + 4y + 1) = 0
e2x(2y + 2) = 0

.From

the second equation, y = −1 and then from the first equation x = 1
2 .

There is only one critical point ( 12 ,−1).We haveH(
1
2 ,−1) =

µ
2e 0
0 2e

¶
,

which is positive definite, so it is a local minimum. Moreover, it is a global
minimum too, since f(x, y) is bounded from below (why?).

3. (Simon and Blume 18.7, page 423): Find the max and min of f(x, y, z) =
yz + xz subject to y2 + z2 = 1 and xz = 3

Solution: The Lagrangian is L(x, y, z, λ1, λ2) = yz + xz − λ1(y
2 + z2 −

1)− λ2(xz − 3). The first order conditions give us:

z − λ2z = 0 (1)

z − 2λ1y = 0 (2)

y + x− 2λ1z − λ2x = 0 (3)

y2 + z2 − 1 = 0 (4)

xz − 3 = 0 (5)

where the last two simply repeat the constraints.
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(1) tell us that either z = 0 or λ2 = 1. But we know from (5) that z
cannot be zero, so λ2 = 1. Now, plug this into (3) and we find that (2)
and (3) tell us that

z − 2λ1y = 0

y − 2λ1z = 0

There are two sets of solutions to this pair of equations - one in which
λ1 =

1
2 and y = z, and one in which λ1 = −12 and y = −z. We now plug

this into our constraints ((4) and (5)) to obtain our four critical points:
(3
√
2,
√
2
2 ,
√
2
2 ); (−3

√
2,−

√
2
2 ,−

√
2
2 ); (3

√
2,−

√
2
2 ,
√
2
2 ); (−3

√
2,
√
2
2 ,−

√
2
2 ). The

first two points are maximizers (yielding a value of 312 for the objective
function), while the second two are minimizers (yielding 212).

4. (Simon and Blume 18.11, page 434): Maximize f(x, y) = 2y2−x, subject
to x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.
Solution: The Lagrangian is L(x, y, λ1, λ2, λ3) = 2y2 − x− λ1(x

2 + y2 −
1)+λ2x+λ3y. Note that the terms in the Lagrangian associated with the
last two constraints enter positively; those constraints can be rewritten as
−x ≤ 0 and −y ≤ 0. We have the first order conditions:

∂L

∂x
= −1− 2λ1x+ λ2 = 0

∂L

∂y
= 4y − 2λ1y + λ3 = 0

λ1(x
2 + y2 − 1) = 0, λ2x = 0, λ3y = 0

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0
x2 + y2 ≤ 1

x ≥ 0, y ≥ 0

The third row contains the complementary-slackness conditions, while the
last two rows give the first order conditions with respect to the Lagrange
multipliers, and simply restate the intitial constraints.

We will begin by showing that the first constraint must bind. Note that
Weierstraß applies here; the constraint set is simply the positive quadrant
of the unit circle, which is a compact set. Now, suppose that the first
constraint does not bind, so that x2+ y2 < 1. Then λ1 = 0 to satisfy the
c-s condition. This implies, from the first FOC, that λ2 = 1, which in turn
implies (again from the c-s conditions) that x = 0. But if this is the case,
the problem reduces to that of maximizing 2y2, subject to the constraints
that y must be nonnegative and that y2 < 1 (still assuming that the first
constraint does not bind). But this clearly has no maximum, as the
function is increasing in y, and an increasing function has no maximum
on an open set. Since we know we have a maximum, it cannot be the
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case that the first constraint is slack when it is achieved. Therefore, it
must be the case that x2 + y2 = 1.

But now we are merely looking for the point on positive quadrant of the
circle which maximizes a function which is increasing in y and decreasing
in x. It is clear that this occurs at the point (0, 1).

5. Let F (x, y) = 2x2 + 2y2 + 8 and G(x, y) = x2 + 2y2 − 6x− 7. Note: this
problem will be much easier and less tedious if you stop now and think
about what these functions ’look like’.

(a) State the implicit function theorem. Find all points on the curve
G(x, y) = 0 around which either y is not expressible as a function of
x or x is not expressible as a function of y. Compute y0(x) along the
curve when x = 2.
Solution: This curve is the intersection of the xy plane with the
paraboloid described by G, which is an ellipse. To see this, note
that we can write G(x, y) = (x − 3)2 + 2y2 − 16 = 0, which clearly
defines an ellipse with center (3, 0), and major axis on the x-axis,
with length 8.
According to the implicit function theorem, the curve does not define
y(x) where ∂G

∂y = 4y = 0 , or at y = 0. Similarly, x(y) is not defined

where ∂G
∂x = 2x − 6 = 0, or x = 3. Notice that these points are the

’top’, ’bottom’, and ’sides’ of our ellipse, where the curve goes just
vertical and horizontal.
The implicit function theorem also tells us that, so long as y(x) is

defined, y0(x) = ∂y
∂xi
(x∗1, ..., x

∗
n) = −

∂G
∂xi

(x∗1,...,x
∗
n,y
∗)

∂G
∂y (x

∗
1,...,x

∗
n,y
∗)
. Here, we have

y0(x) = −2x−64y = 1
2y when x = 2. Plugging x = 2 into G(x, y) = 0,

we find that y = ±
q

15
2 , so y

0(x) = ±
√
30
30 .

(b) Find all unconstrained optima of F and G on R2. Is the Weierstraß
theorem applicable?
Weierstraß does not apply, because R2 is unbounded. It is clear that
neither of these functions have maxima. Nevertheless, we can find
minima.
Observe first that G(x, y) can be split into f(x) = x2 − 6x and
g(y) = 2y2 − 7. Both of these functions describe convex parabo-
lae (parabolas? paraboleese? whatever), so it should be clear that
the function will have no global max, that it will have a global min,
and that G as a whole describes a paraboloid in R3. Taking first
order conditions, we find that

2x− 6 = 0 (6)

4y = 0 (7)
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so the only critical point is (3, 0). Since both second order conditions
are positive, we again see that the function is convex, and that this
is therefore a global minimum. Exactly the same method can be
applied to F , which yields (0, 0) as the sole critical point and global
minimum.

(c) Maximize and minimize d(x, y) =
p
x2 + y2 subject to G(x, y) ≤ 0.

Does Weierstraß apply?
Solution: Weierstraß does apply, because the ellipse defined by the
constraint is a compact set and the distance function is continuous.
The simplest way to solve this problem is to treat it first as an equal-
ity constrained problem, then as an inequality constrained problem.
The first is a matter of finding which points on the ellipse described
by G = 0, and the second of finding which points on or inside the
ellipse, are closest to and furthest from the origin.
The ellipse described by G(x, y) = 0 clearly comes closest to the
origin at the point (−1, 0) and is furthest from it at (7, 0). But we
can also get the same answer using the standard Lagrangian method,
noting that the objective function is d(x, y) =.

p
x2 + y2 (the formula

for distance from the origin).

L(x, y, λ) =
p
x2 + y2 − λ(x2 + 2y2 − 6x− 7) (8)

∂L

∂x
= x(x2 + y2)−

1
2 − λ(2x− 6) = 0 (9)

∂L

∂y
= y(x2 + y2)−

1
2 − 4λy = 0 (10)

∂L

∂λ
= x2 + 2y2 − 6x− 7 = 0 (11)

We note that y = 0 satsfies the second FOC. Plugging this into
the constraint, we find that two critical points are (−1, 0) and (7, 0).
Technically, we’ve treated x as a function of y, and should therefore be
concerned about the points where this is not defined (i.e., at x = 3).
This would give us two more critical points: (3, 2

√
2) and (3,−2

√
2).

If we have drawn the ellipse that G(x, y) represents we know that we
need not check these points, however - and indeed, we find that

F (−1, 0) = 1 (12)

F (7, 0) = 49 (13)

F (3, 2
√
2) = F (3,−2

√
2) =

√
17 (14)

So that (−1, 0) is our minimizer and (7, 0) is our maximizer for the
equality constrained problem. Now we have to check all points in
the ellipse, in addition to its boundary. When the constraint doesn’t
bind, we have the additional critical point (0, 0) - the origin itself.
Thus, the maximum occurs at (7, 0), and the minimum at (0, 0).
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(d) Maximize and minimize F (x, y) subject to G(x, y) = 0. Is the Weier-
straß theorem applicable?
Solution: Note that F (x, y) = 2[d(x, y)]2 + 8, a monotonic trans-
formation of d(x, y). Thus, the extremal points must be the same.
Weierstraß is once again applicable, and the max and min are at the
points we found in part (c) for the equality constrained problem.

(e) Maximize and minimize F (x, y) subject to G(x, y) ≤ 0. Is the Weier-
straß theorem applicable?
Weierstraß is applicable, and the max and min are the same points
we found in part (c) for the inequality constrained problem.

(f) Maximize and minimize F (x, y) subject to G(x, y) ≥ 0. Is the Weier-
straß theorem applicable?
Weierstraß is no longer applicable, since the set outside the ellipse
is not bounded. There exists no maximum (no point furthest from
the origin), but the minimum occurs at (−1, 0), the point which we
earlier found was the point on the ellipse closest to the origin.

6. (Simon and Blume 20.1, page 493): Which of the following functions are
homogeneous? What are the degrees of homogeneity of the homogeneous
ones?

(a) 3x5y + 2x2y4 − 3x3y3
Solution: The function is homogenous of degree six: f(tx, ty) =
3t6x5y + 2t6x2y4 − 3t6x3y3 = t6f(x, y).

(b) x1/2y−1/2 + 3xy−1 + 7

Solution: The function is homogenous of degree zero.

(c) x3/4y1/4 + 6x

Solution: The function is homogenous of degree one.

(d) (x2−y2)
(x2+y2) + 3

Solution: The function is homogenous of degree zero.

7. (Simon and Blume 20.6, page 493): Prove that if f and g are functions
on Rn that are homegeneous of different degrees, then f + g is not homo-
geneous.

Solution: Let f be homogenous of degree k; then f (tx) = tkf(x); sim-
ilarly, if g is homogenous of degree l 6= k, then g (tx) = tlg(x). Then
(f + g)(tx) = f(tx)+ g(tx) = tkf(x)+ tlg(x), and so f + g is not homoge-
nous.

8. Many utility functions we work with exhibit diminishing marginal returns
(i.e., they are concave in each of their arguments, ∂2u

∂x2i
< 0). Is this an

ordinal property? Why or why not?
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Solution: No; it is not invariant under monotonic transformation. For
example, the function log(x) is concave in x, but the monotonic transfor-
mation x2 = [exp{log(x)}]2 is convex.

9. Show that the following functions are homothetic:

(a) ex
2yexy

2

Solution: ex
2yexy

2

= exp{x2y+xy2} which is a monotonic transfor-
mation of the homogeneous (of degree 3) function x2y + xy2.

(b) 2 log x+ 3 log y
Solution: 2 log x + 3 log y = log(x2y3) which is a monotonic trans-
formation of the homogeneous (of degree 5) function x2y3.

(c) x3y6 + 15x2y4 + 75xy2 + 125

Solution: x3y6 + 15x2y4 + 75xy2 + 125 = (xy2 + 5)3, which is a
monotonic transformation of xy2+5, which is a monotonic transfor-
mation of the homogenous (of degree 3) function xy2.
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