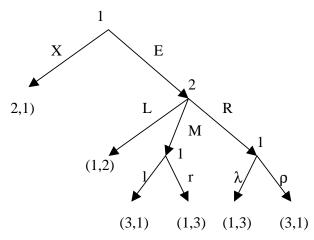
14.12 Game Theory – Midterm I 10/10/2001

Prof. Muhamet Yildiz

Instructions. This is an open book exam; you can use any written material. You have one hour and 20 minutes. Each question is 25 points. Good luck!


1. Find all the Nash equilibria in the following game:

$1\backslash 2$	${ m L}$	\mathbf{M}	\mathbf{R}
Τ	1,0	0,1	5,0
В	0,2	2,1	1,0

2. Find all the pure strategies that are consistent with the common knowledge of rationality in the following game. (State the rationality/knowledge assumptions corresponding to each operation.)

$1\backslash 2$	\mathbf{L}	Μ	R
${ m T}$	1,1	0,4	2,2
Μ	2,4	2,1	1,2
В	1,0	0,1	0,2

3. Consider the following extensive form game.

- (a) Using Backward Induction, compute an equilibrium of this game.
- (b) Find the normal form representation of this game.
- (c) Find all pure strategy Nash equilibria.
- 4. In this question you are asked to compute the rationalizable strategies in linear Bertrand-duopoly with discrete prices. We consider a world where the prices must be the positive multiples of cents, i.e.,

$$P = \{0.01, 0.02, \dots, 0.01n, \dots\}$$

is the set of all feasible prices. For each price $p \in P$, the demand is

$$Q(p) = \max\left\{1 - p, 0\right\}.$$

1

We have two firms $N = \{1, 2\}$, each with zero marginal cost. Simultaneously, each firm i sets a price $p_i \in P$. Observing the prices p_1 and p_2 , consumers buy from the firm with the lowest price; when the prices are equal, they divide their demand equally between the firms. Each firm i maximizes its own profit

$$\pi_{i}(p_{1}, p_{2}) = \begin{cases} p_{i}Q(p_{i}) & \text{if } p_{i} < p_{j} \\ p_{i}Q(p_{i})/2 & \text{if } p_{i} = p_{j} \\ 0 & \text{otherwise,} \end{cases}$$

where $j \neq i$.

- (a) Show that any price p greater than the monopoly price $p^{mon} = 0.5$ is strictly dominated by some strategy that assigns some probability $\epsilon > 0$ to the price $p^{\min} = 0.01$ and probability 1ϵ to the price $p^{mon} = 0.5$.
- (b) Iteratively eliminating all the strictly dominated strategies, show that the only rationalizable strategy for a firm is $p^{\min} = 0.01$.
- (c) What are the Nash equilibria of this game?