14.12 Game Theory Prof. Muhamet Yildiz TA: Kenichi Amaya Fall 2001

Homework 2

Due on 10/3/2001 (in class)

1. Consider the following game:

$1\backslash 2$	${ m L}$	\mathbf{R}
${ m T}$	(1,1)	(1,0)
В	(0,1)	(0, 10000)

- (a) Compute the rationalizable strategies.
- (b) Now assume that players can tremble: when a player intends to play a strategy s, with probability $\epsilon = 0.001$, nature switch to the other strategy s', when s' is played. For instance, if player 2 plays L (or intends to play L), with probability ϵ L is played, with probability 1ϵ , R is played. Compute the rationalizable strategies for this new game.
- (c) Discuss your results (briefly).
- 2. Compute all the Nash equilibria of the following game.

	$_{ m L}$	M	R
A	(3,1)	(0,0)	(1,0)
В	(0,0)	(1, 3)	(1, 1)
С	(1,1)	(0, 1)	(0, 10)

- 3. Compute the pure-strategy Nash equilibria in the following linear Cournot oligopoly for arbitrary n firms: each firm has marginal cost c>0 and a fixed cost F>0, which it needs to incur only if it produces a positive amount; the inverse-demand function is given by $P(Q) = \max\{1-Q,0\}$, where Q is the total supply.
- 4. A group of n students go to a restaurant. It is common knowledge that each student will simultaneously choose his own meal, but all students will share the total bill equally. If a student gets a meal of price p and contributes x towards paying the bill, his payoff will be $\sqrt{p} x$. Compute the Nash equilibrium. Discuss the limiting cases n = 1 and $n \to \infty$.