14.128 Mathematical Preliminaries

Geraint Jones

February 5th 2004

For full definitions see SLP Chapter 3 or Luenberger, "Optimization by vector space methods".

 $\bf Vector\ Space$ - Space in which can carry out addition and scalar multiplication

 $x,y\in X\Longrightarrow x+y\in X$ and $\alpha x\in X$ for scalar α . The operations of addition and scalar multiplication follow all the rules familiar from the real numbers.

Examples: Euclidean space \mathbb{R}^n , sequences on the reals $\mathbb{R}^{\mathbb{N}}$, continuous functions on an interval [a, b]

Convex Sets

A set K in a vector space is convex $\Leftrightarrow \alpha x + (1 - \alpha) y \in K$ whenever $x, y \in K$ and $0 \le \alpha \le 1$

Metric Space - any space S in which we can define distance:

Metric: $\rho(x,y): S^2 \to \mathbb{R}$ satisfies:

i) $\rho(x,y) \ge 0$ ii) $\rho(x,y) = \rho(y,x)$ and iii) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ TRIANGLE INEQUALITY

Normed Vector Space - Vector space with a metric defined by a NORM Norm: i) $||x|| \ge 0$ ii) $||\alpha x|| = |\alpha| ||x||$ and iii) $||x + y|| \le ||x|| + ||y||$

defines metric $\rho(x,y) = ||x-y||$

Examples: Euclidean norm on \mathbb{R}^n , $\left(\sum_{i=1}^n x_i^2\right)^{1/2}$ sup norm on the continuous functions: $\|f\| = \sup_{x \in [a,b]} |f(x)|$

Convergence - can define in any metric space

 $\{x_n\}_{n=0}^{\infty}$ converges to $x \Leftrightarrow \text{any } \varepsilon > 0$ can find N_{ε} such that $\rho\left(x, x_n\right) < \varepsilon$ for all $n > N_{\varepsilon}$

Cauchy Criterion - convergence without defining limit

 $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence \Leftrightarrow any $\varepsilon > 0$ can find N_{ε} such that $\rho(x_m, x_n) < \varepsilon$ for all $m, n > N_{\varepsilon}$.

 $Convergence \Longrightarrow Cauchy.$

Complete Space - to get the converse Cauchy \Longrightarrow Convergence.

A metric space S is complete if and only if every Cauchy sequence converges to a point in S.

Open and Closed

A set K is open in a metric space if for all $x \in K$ there exists $\varepsilon(x) > 0$ s.t. the ball $\{y : \rho(x,y) < \varepsilon\}$ is contained in K

 \overline{L} , The closure of a set L consists of all points x such that every ball at x contains a point of L

A set L is closed if it is equal to its closure, $L = \overline{L}$.

The complement of a closed set is open and vice versa.

L is closed if and only if every convergent sequence in L converges to a point in L.

Continuity

A function $T: X \to Y$ where X and Y are metric spaces is continuous at $x \Leftrightarrow \text{every } \varepsilon > 0$ there is a $\delta > 0$ s.t. $\rho(T(x), T(y)) < \varepsilon$ for every y that satisfies $\rho(x, y) < \delta$

Equivalent definition: T is continuous at $x \iff$ for any sequence $x_n \to x$, $T(x_n) \to T(x)$

${\bf Compactness} \ \hbox{--} \ {\bf useful} \ {\bf for} \ {\bf maximum} \ {\bf theorem}$

A set K in a metric space is compact \Leftrightarrow every sequence $\{x_n\}$ in K has a convergent subsequence.

In Euclidean space compactness is equivalent to closed and bounded. Compact spaces are complete.

Contractions - useful for constructing solutions to fixed point problems $T: S \to S$, a function on a metric space, is a contraction $\Leftrightarrow \exists \beta \in (0,1)$ with $\rho(Tx, Ty) \leq \beta \rho(x, y)$

Contraction Mapping Theorem

If T is a contraction on a complete metric space, it has a unique fixed point v and $\rho(T^n v_0, v) \leq \beta^n \rho(v_0, v)$

Blackwell's Sufficient Conditions

T, a bounded function is a contraction if:

i)
$$f \leq g \Longrightarrow Tf \leq Tg$$
 ii) $T(f+a)(x) \leq (Tf)(x) + \beta a$