PROBLEM SET 3: CAREER CONCERNS "DUE" FRIDAY OCTOBER 1.

Problem 1: Normal Learning Model

Suppose that z_t is a noisy signal about η , $z_t = \eta + \varepsilon_t$, where η is Normally distributed with mean m_0 and variance $1/h_0$ (*i.e.*, precision h_0) and the ε_t are i.i.d. with mean zero and precision h_{ε} and are independent of η . Show that

$$E(\eta | z_1) = (h_0 m_0 + h_{\varepsilon} z_1) / (h_0 + h_{\varepsilon})$$

and then that

$$E(\eta \mid z_1, ..., z_t) = [h_0 m_0 + h_{\varepsilon}(z_1 + ... + z_t)] / (h_0 + th_{\varepsilon})$$

Problem 2: Multi-task Meets Career Concerns

Consider the following two-period multi-task incentive problem:

- 1) the Agent's (observable but non-contractible) output in period t is $y_t = \eta + f_1 a_{1t} + f_2 a_{2t} + \varepsilon_t$;
- 2) the Agent's measured (and contractible) performance in period t is $p_t = \eta + g_1 a_{1t} + g_2 a_{2t} + \phi_t$;
- the prior on the Agent's ability, η, is Normally distributed with mean m and precision h;
- 4) the error terms ε_t and ϕ_t are Normally distributed with mean zero and precisions h_{ε} and h_{ϕ} , respectively, and are independent of each other and of η ;
- 5) the Agent's action cost in period t is $c(a_{1t}, a_{2t}) = [a_{1t}^2 + a_{2t}^2] / 2;$
- 6) the Agent's payoff is $U = [w_1 c(a_{11}, a_{21})] + \delta[w_2 c(a_{12}, a_{22})]$, and the Principal's payoff is $\pi = [y_1 w_1] + \delta[y_2 w_2]$;
- 7) the parties are risk-neutral;
- 8) the wage contract in period t is $w_t = s_t + b_t p_t$;
- 9) there is perfect competition among identical Principals in each period; and
- 10) the parties cannot commit in period 1 to any actions in period 2.

Solve for the optimal contracts in periods 1 and 2. Identify and describe the terms that make b_1^* different from b_2^* .

Problem 3: Influence Activities

Milgrom and Roberts (1988) argue that an important cost of integration is influence (*i.e.*, when you give someone authority, she gets lobbied). This problem investigates that idea using a career-concerns model.

The timing is: (i) two parties negotiate over control of the decision right; (ii) the parties simultaneously choose influence actions, with party i choosing action $a_i \in A$ at cost $c(a_i)$; (iii) the parties publicly observe the signal σ ; (iv) the party with control chooses a decision, $d \in D$; (v) the parties receive their payoffs, $U_i(s, d)$ for i = 1, 2 (where U_i is gross of any monetary transfers and action costs).

Let $U_i(s, d) = -k_i (d - s - b_i)^2$, where $k_i > 0$ and $b_i \in \Re$. The parameter k measures the party's sensitivity to the difference between the decision taken and that party's ideal decision; the parameter b measures how the party's ideal decision differs from the state.

Let $\sigma = s + a_i + a_j + \varepsilon$, and let there be symmetric uncertainty: both parties share the prior belief that s is Normal with mean m and variance 1/h (*i.e.*, precision h) and ε is Normal with mean zero and precision h_{ε} (and independent of s). Let $D = \Re$ and $A = \Re$, and let the cost function be symmetric around zero, with c'(0) = 0, $c'(-\infty) = -\infty$, $c'(\infty) = \infty$, and c'' > 0.

Suppose party i is given control in stage (i).

- (a) What problem does party i solve in stage (iv)?
- (b) What is that problem's solution?
- (c) What problem does party j solve in stage (ii)?
- (d) What is that problem's solution?
- (e) How does party j's equilibrium influence activity vary with k_i ?
- (f) What is the expected total payoff from allocating control to party i?

Problem 4

A tenant works with a machine owned by an entrepreneur to produce one widget per period at a periodic cost of

$$c_t(e_t,\beta) = \beta - e_t - \varepsilon_t$$
, $t = 1,2$.

Here e_t is the amount of unobserved effort that the tenant puts in to lower the unit cost in period t; ε_t is a transitory disturbance term, which is distributed Normally with mean zero and precision (inverse of variance) h_{ε} ; and β is a cost characteristic of the machine that neither the tenant nor the entrepreneur knows with certainty.

Both hold symmetric beliefs about β , viewing it at the start as Normally distributed with mean b_0 and precision h_0 and updating these beliefs based on the mutually observed realization of c_1 . The disturbance terms ε_t are independent of each other and the cost parameter β .

The tenant earns p in each period from selling the widget in a competitive market. The tenant bears all costs of producing the widget (the observed, but unverifiable cost c_t as well as a private, unobserved cost of effort $g(e_t)$; g' > 0, g'' < 0).

Each period the tenant pays the entrepreneur in advance a rental fee r_t set so that the tenant earns a constant net *expected* income in that period (which you can take to be zero). As in the model of career concerns, the periodic rental is based on a forecast of the tenant's effort decision and the beliefs currently held about the uncertain cost parameter of the machine, β .

- a. Write down the conditions characterizing a Nash equilibrium of this model. (For this part, don't make use of specific distributional assumptions.)
- b. Show that the tenant's effort level will be inefficiently low in the first period and optimal in the second period.
- c. Explain why the *increasing* effort pattern in part (b) is so different from the *decreasing* effort pattern in the standard career-concerns model.