HYPOTHESIS TESTING

8.1 INTRODUCTION

As in the previous chapter, let us suppose that a random sample from a population distri-
bution, specified except for a vector of unknown parameters, is to be observed. However,
rather than wishing to explicitly estimate the unknown parameters, let us now suppose
that we are primarily concerned with using the resulting sample to test some particular
hypothesis concerning them. As an illustration, suppose that a construction firm has just
purchased a large supply of cables that have been guaranteed to have an average breaking
strength of at least 7,000 psi. To verify this claim, the firm has decided to take a random
sample of 10 of these cables to determine their breaking strengths. They will then use the
result of this experiment to ascertain whether or not they accept the cable manufacturer’s
hypothesis that the population mean is at least 7,000 pounds per square inch.

A statistical hypothesis is usually a statement about a set of parameters of a population
distribution. It is called a hypothesis because it is not known whether or not it is true.
A primary problem is to develop a procedure for determining whether or not the values
of a random sample from this population are consistent with the hypothesis. For instance,
consider a particular normally distributed population having an unknown mean value 6
and known variance 1. The statement “6 is less than 17 is a statistical hypothesis that
we could try to test by observing a random sample from this population. If the random
sample is deemed to be consistent with the hypothesis under consideration, we say that
the hypothesis has been “accepted”; otherwise we say that it has been “rejected.”

Note that in accepting a given hypothesis we are not actually claiming that it is true but
rather we are saying that the resulting data appear to be consistent with it. For instance,
in the case of a normal (8, 1) population, if a resulting sample of size 10 has an average
value of 1.25, then although such a result cannot be regarded as being evidence in favor
of the hypothesis “9 < 1,” it is not inconsistent with this hypothesis, which would thus
be accepted. On the other hand, if the sample of size 10 has an average value of 3, then
even though a sample value that large is possible when 6 < 1, itis so unlikely that it seems
inconsistent with this hypothesis, which would thus be rejected.
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291 / Chapter 8: Hypothesis Testing

8.2 SIGNIFICANCE LEVELS

Consider a population having distribution £, where 6 is unknown, and suppose we want
to test a specific hypothesis about 6. We shall denote this hypothesis by Ay and call it
the null hypothesis. For example, if Fy is a normal distribution function with mean 6 and
variance equal to 1, then two possible null hypotheses about  are

@QHy:0=1
(b)H()Z@fl

Thus the first of these hypotheses states that the population is normal with mean 1 and
variance 1, whereas the second states that it is normal with variance 1 and a mean less than
or equal to 1. Note that the null hypothesis in (a), when true, completely specifies the
population distribution; whereas the null hypothesis in (b) does not. A hypothesis that,
when true, completely specifies the population distribution is called a simple hypothesis;
one that does not is called a composite hypothesis.

Suppose now that in order to test a specific null hypothesis Hp, a population sample
of size » — say Xj, ..., X, — is to be observed. Based on these # values, we must decide
whether or not to accept Hy. A test for Hy can be specified by defining a region C in
n-dimensional space with the proviso that the hypothesis is to be rejected if the random
sample X1,. .., X, turns out to lie in C and accepted otherwise. The region C is called the
critical region. In other words, the statistical test determined by the critical region C is the
one that

accepts Hy if (X,X,....X) €C
and
rejects  Hy if  (X,....X)eC

For instance, a common test of the hypothesis that 6, the mean of a normal population
with variance 1, is equal to 1 has a critical region given by

n .

Xi
2 1.96

C=104,....%): |=— 1] > =2 8.2.1
Xa ) " >ﬁ ( )

Thus, this test calls for rejection of the null hypothesis that & = 1 when the sample average
differs from 1 by more than 1.96 divided by the square root of the sample size.

It is important to note when developing a procedure for testing a given null hypothesis
Hy that, in any test, two different types of errors can result. The first of these, called a zype
I error, is said to result if the test incorrectly calls for rejecting Hy when it is indeed correct.
The second, called a #ype II error, results if the test calls for accepting Hy when it is false.
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Now, as was previously mentioned, the objective of a statistical test of Hy is not to explicitly
determine whether or not Hj is true but rather to determine if its validity is consistent
with the resultant data. Hence, with this objective it seems reasonable that Hy should only
be rejected if the resultant data are very unlikely when Hj is true. The classical way of
accomplishing this is to specify a value & and then require the test to have the property
that whenever H is true its probability of being rejected is never greater than a. The value
o, called the level of significance of the test, is usually set in advance, with commonly chosen
values being & = .1,.05,.005. In other words, the classical approach to testing Hy is to fix
a significance level o and then require that the test have the property that the probability
of a type I error occurring can never be greater than «.

Suppose now that we are interested in testing a certain hypothesis concerning 6, an
unknown parameter of the population. Specifically, for a given set of parameter values w,
suppose we are interested in testing

HQZQGM/

A common approach to developing a test of Hy, say at level of significance «, is to start by
determining a point estimator of § — say &(X). The hypothesis is then rejected if (X)) is
“far away” from the region w. However, to determine how “far away” it need be to justify
rejection of Hy, we need to determine the probability distribution of &(X) when Hj is
true since this will usually enable us to determine the appropriate critical region so as to
make the test have the required significance level «. For example, the test of the hypothesis
that the mean of a normal (0, 1) population is equal to 1, given by Equation 8.2.1, calls
for rejection when the point estimate of 6 — that is, the sample average — is farther than
1.96//n away from 1. As we will see in the next section, the value 1.96/4/7 was chosen
to meet a level of significance of o = .05.

8.3 TESTS CONCERNING THE MEAN OF A
NORMAL POPULATION

8.3.1 Case oF KNOWN VARIANCE

Suppose that Xi,...,X, is a sample of size # from a normal distribution having an

unknown mean g and a known variance o and supposé we are interested in testing -

the null hypothesis
Hy:p=po

against the alternative hypothesis
Hy ot # o

where (10 is some specified constant.
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Since X = Y "_, Xi/n is a natural point estimator of /i, it seems reasonable to accept
Hy if X is not too far from pq. That is, the critical region of the test would be of the form

C={Xi,.... X% :|X — ol > ¢} (8.3.1)

for some suitably chosen value c.

If we desire that the test has significance level &, then we must determine the critical
value ¢ in Equation 8.3.1 that will make the type I error equal to @. That is, ¢ must be
such that

PuoilX — pol > ¢} =« (8.3.2)
where we write P,,, to mean that the preceding probability is to be computed under the

assumption that i = 9. However, when u = o, X will be normally distributed with
mean (o and variance 0%/ and so Z, defined by

>

Z

— Mo
olyn

will have a standard normal distribution. Now Equation 8.3.2 is equivalent to

P {|Z| N
g
or, equivalently,
2P {Z A
g

where Z is a standard normal random variable. However, we know that

PlZ > zypn) = al2

and so
c/n
= Zq/2
o
or
Zu20
c =

N
Thus, the significance level o test is to reject Hy if |X — 1ol > 2zap0//n and accept
otherwise; or, equivalently, to

N —
%xx — ol > zan
(8.3.3)

N —
accept  Hy if —|X — pol < zan2
o

reject  Hp if
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FIGURE 8.1

This can be pictorially represented as shown in Figure 8.1, where we have superim-
posed the standard normal density function [which is the density of the test statistic

(X — po)lo when Hy is true].

EXAMPLE 8.3a It is known that if a signal of value p is sent from location A, then the
value received at location B is normally distributed with mean u and standard deviation 2.
That is, the random noise added to the signal is an NV (0, 4) random variable. There is
reason for the people at location B to suspect that the signal value ;1 = 8 will be sent
today. Test this hypothesis if the same signal value is independently sent five times and
the average value received at location B is X = 9. 5.

SOLUTION Suppose we are testing at the 5 percent level of significance. To begin, we
compute the test statistic '

V7 V5

— 5
— X — po] = —(1.5) = 1.68
o 2

Since this value s less than z 925 = 1.96, the hypothesis is accepted. In other words, the
data are not inconsistent with the null hypothesis in the sense that a sample average as far
from the value 8 as observed would be expected, when the true mean is 8, over 5 percent
of the time. Note, however, that if a less stringent significance level were chosen —
say o = .1 — then the null hypothesis would have been rejected. This follows since
z05 = 1.645, which is less than 1.68. Hence, if we would have chosen a test that had a
10 percent chance of rejecting Hy when Hy was true, then the null hypothesis would have
been rejected.

The “correct” level of significance to use in a given situation depends on the individ-
ual circumstances involved in that situation. For instance, if rejecting a null hypothesis
Ho would result in large costs that would thus be lost if Hy were indeed true, then we
might elect to be quite conservative and so choose a significance level of .05 or .01. Also,
if we initially feel strongly that Hjy was correct, then we would require very stringent data
evidence to the contrary for us to reject Hy. (That is, we would set a very low significance
level in this situation.) M
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The test given by Equation 8.3.3 can be described as follows: For any observed value of
the test statistic /72| X — pol/o, call it v, the test calls for rejection of the null hypothesis
if the probability that the test statistic would be as large as » when Hy is true is less than
or equal to the significance level ov. From this, it follows that we can determine whether
or not to accept the null hypothesis by computing, first, the value of the test statistic and,
second, the probability that a unit normal would (in absolute value) exceed that quantity.
This probability — called the p-value of the test — gives the critical significance level
in the sense that Ay will be accepted if the significance level o is less than the p-value
and rejected if it is greater than or equal.

In practice, the significance level is often not set in advance but rather the data are
looked at to determine the resultant p-value. Sometimes, this critical significance level is
clearly much larger than any we would want to use, and so the null hypothesis can be
readily accepted. At other times the p-value is so small that it is clear that the hypothesis
should be rejected.

EXAMPLE 8.3b In Example 8.3a, suppose that the average of the 5 values received is
X = 8.5. In this case,

NG

[

Since

P{Z| > 559} = 2P{Z > 559}
=2 x .288 = .576

it follows that the p-value is .576 and thus the null hypothesis Hy that the signal sent
has value 8 would be accepted at any significance level & < .576. Since we would clearly
never want to test a null hypothesis using a significance level as large as .576, Hy would

be accepted.
On the other hand, if the average of the data values were 11.5, then the p-value of the

test that the mean is equal to 8 would be

P{Z| > 1.75v/5) = P{|Z| > 3.913}
~ 00005

For such a small p-value, the hypothesis that the value 8 was sent is rejected. B

We have not yet talked about the probability of a type IT error — that is, the probability
of accepting the null hypothesis when the true mean u is unequal to 11¢. This probability
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will depend on the value of 1, and so let us define B(j1) by

B(u) = Py f{acceptance of Hy}
X -

—P { O’/\/— Szot/2_}

)_(__
A= Py —zan < /f < za/2

The function B(uw) is called the operating characteristic (or OC) curve and represents the
probability that Ay will be accepted when the true mean is .
To compute this probability, we use the fact that X is normal with mean ¢ and variance

o?/n and so
X—n

Z =
olyn

~ N(0,1)

Hence,

"
wl e oln ~ o/f_ Fal2 = /f}
Ho — Ho —
=P — <Z<
{a/ﬁ RN ”‘”Z}
o — 1 1o — [t
= | —— - 8.3.4
<o/ﬁ +Za/2> <a/f za/z) (8.3.4)

where ® is the standard normal distribution function.

For a fixed significance level &, the OC curve given by Equation 8.3.4 is symmetric
about (¢ and indeed will depend on 1 only through (/n/0)|it — j1o|. This curve with
the abscissa changed from p to d = (/nlo)|; — ol is presented in Figure 8.2 when
a = .05.

EXAMPLE 8.3¢ For the problem presented in Example 8.3a, let us determine the probability
of accepting the null hypothesis that &+ = 8 when the actual value sent is 10. To do so,
we compute

\—(/TE(/LO”M)=—?X2=—\/§

T W
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0.8
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FIGURE 8.2 The OC curve for the two-sided normal test for significance level o0 = .05.
As z25 = 1.96, the desired probability is, from Equation 8.3.4,

B(—~/5 + 1.96) — D(—+/5 — 1.96)
=1—®/5—1.96) — [1 — d(/5+1.96)]
= ©(4.196) — D(.276)
=392 W

REMARK

The function 1 — B(u) is called the power-fiunction of the test. Thus, for a given value u,
the power of the test is equal to the probability of rejection when 4 is the true value. H

The operating characteristic function is useful in determining how large the random
sample need be to meet certain specifications concerning type II errors. For instance,
suppose that we desire to determine the sample size 7 necessary to ensure that the probability
of accepting Hp : jt = j1o when the true mean is actually 4 is approximately . That is,
we want 7 to be such that

Bu1) =~ B

But from Equation 8.3.4, this is equivalent to

o (,ﬂ@_—_@ +m> _o ([L@;f_@ _ M) ~ B (8.3.5)

o g

Although the foregoing cannot be analytically solved for 7, a solution can be obtained by
using the standard normal distribution table. In addition, an approximation for 7 can be
derived from Equation 8.3.5 as follows. To start, suppose that 41 > . Then, because
this implies that

o — 1

olyn

—zZq/2 < —Za2
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it follows, since @ is an increasing function, that

@ (L = za/z) < () = PIZ < ~za) = PIZ = 7ap) = a2
olyn

Hence, we can take

Ho — M
S| ——— - ~0
( O’/ﬁ Za/2)
and so from Equation 8.3.5

Mo — M1
RO ———m + g 8.3.
B (a/ﬁ +Z/2) (8.3.0)

or, since
B=PlZ >z} =P{Z < —zg} = P(—2p)

we obtain from Equation 8.3.6 that

7
—zg ~ (1o — Ml)%: + za/2
or

)~ (zar2 + 28)%0

8.3.
(m1 — po)? (8.3.7)

In fact, the same approximation would result when 17 < o (the details are left as an
exercise) and so Equation 8.3.7 is in all cases a reasonable approximation to the sample
size necessary to ensure that the type II error at the value u = w1 is approximately equal

to .

EXAMPLE 8.3d For the problem of Eiample 8.3a, how many signals need be sent so that
the .05 level test of Hy : jo = 8 has at least a 75 percent probability of rejection when
n=972

SOLUTION Since z 925 = 1.96, 235 = .67, the approximation 8.3.7 yields

(1.96 + .67)?
N ——"4=1921
" 1.2)? ?

Hence a sample of size 20 is needed. From Equation 8.3.4, we see that with z = 20

B(9.2) = (— 1.25% + 1.96) - @ (— 12720 — 1.96)

2

= ®(—-.723) — P(—4.643)
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~1—®(723)
~ 235

Therefore, if the message is sent 20 times, then there is a 76.5 percent chance that the
null hypothesis i = 8 will be rejected when the true mean is 9.2. H

ONE-SIDED TESTS

In testing the null hypothesis that ;1 = j10, we have chosen a test that calls for rejection
when X is far from pg. That is, a very small value of X or a very large value appears to
make it unlikely that p (which X is estimating) could equal j10. However, what happens
when the only alternative to i being equal to g is for 1 to be greater than j1o? That is,
what happens when the alternative hypothesis to Hoy: o= o is Hy @ o > po? Clearly,
in this latter case we would not want to reject Hy when X is small (since a small X is more
likely when Hy is true than when Hj is true). Thus, in testing

Hy:p=po versus Hy:p> o (8.3.8)

we should reject Hy when X, the point estimate of Lo, is much greater than pg. That is,
the critical region should be of the following form:

C:{(X,...,Xn):)_(—uo>c}

Since the probability of rejection should equal a when Hy is true (that is, when 1 = [Lo),
we require that ¢ be such that

Py, (X — o >cl =« (8.3.9)

But since

N X - I20]
alJn (
has a standard normal distribution when Hy is true, Equation 8.3.9 is equivalent to
P {Z > ﬂ} =«
o

when Z is a standard normal. But since
PiZ >z =«

we see that

&
Q

S
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Hence, the test of the hypothesis 8.3.8 is to reject Hp if X — pug > 201/, and accept
otherwise; or, equivalently, to

accept Hy if ——Z()_(— o) < zy
o (8.3.10)

reject  Hy if ﬁ(f— Ho) > 2o
o

This is called a ome-sided critical region (since it calls for rejection only when X is large).
Correspondingly, the hypothesis testing problem

Ho: = o

Hy e > o

is called a one-sided testing problem (in contrast to the rwo-sided problem that results when

the alternative hypothesis is A} : i % o).

To compute the p-value in the one-sided test, Equation 8.3.10, we first use the data
to determine the value of the statistic /%2(X — uo)/o. The p-value is then equal to the
probability that a standard normal would be at least as large as this value.

EXAMPLE 8.3e  Suppose in Example 8.3a that we know in advance that the signal value is
at least as large as 8. What can be concluded in this case?

SOLUTION To see if the data are consistent with the hypothesis that the mean is 8, we test
Hy:u=238

against the one-sided alternative
Hiu>8

The value of the test statistic is /7(X — 1g)/o = +/5(9.5 — 8)/2 = 1.68, and the p-value
is the probability that a standard normal would exceed 1.68, namely,

p-value = 1 — ®(1.68) = .0465

Since the test would call for rejection at all significance levels greater than or equal to .0465,
it would, for instance, reject the null hypothesis at the & = .05 level of significance. M

The operating characteristic function of the one-sided test, Equation 8.3.10,

B(n) = Py{accepting Hy}
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can be obtained as follows:

o

Blu) = L {YEMO""ZO:%}

X—pu  po—p
P < o
{or/ﬁ_a/ﬁ +z}

:p{Zg p;o/:/; —I—za}, Z ~N(©,1)

where the last equation follows since ﬁ()_( — 1)/o has a standard normal distribution.

Hence we can write
no — M
=0 —Fr
ﬂ(ﬂ) ( U/ﬁ + Za)

Since @, being a distribution function, is increasing in its argument, it follows that B(u)
decreases in p; which is intuitively pleasing since it certainly seems reasonable that the
larger the true mean s, the less likely it should be to conclude that i < . Also since
d(z,) = 1 — a, it follows that

By =1—«a

The test given by Equation 8.3.10, which was designed to test Ay : (L = Lo versus
H) : ;> o can also be used to test, at level of significance &, the one-sided hypothesis

Hy:p < o

versus
Hy:tp> o

To verify that it remains a level o test, we need show that the probability of rejection is
never greater than o when Hy is true. That is, we must verify that

1— B <a  forallu < po

or
Bu)=1—a  foral u < po

But it has previously been shown that for the test given by Equation 8.3.10, (1) decreases
in st and B(g) = 1 — «. This gives that

B(u) = Bluo) =1 —« forall v < po

which shows that the test given by Equation 8.3.10 remains a level o test for Hy @ 0 < 1o
against the alternative hypothesis /) @ it < fo.
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REMARK

We can also test the one-sided hypothesis
Hy:pw=po (oru>pp)  versus Hi:p < po

at significance level o by

accepting Hy if ﬁ()_( — o) > —zy
o
rejecting  Hy otherwise

This test can alternatively be performed by first computing the value of the test statistic
V(X — po)lo. The p-value would then equal the probability that a standard normal
would be less than this value, and the hypothesis would be rejected at any significance level
greater than or equal to this p-value.

EXAMPLE 8.3f All cigarettes presently on the market have an average nicotine content of
at least 1.6 mg per cigarette. A firm that produces cigarettes claims that it has discovered a
new way to cure tobacco leaves that will result in the average nicotine content of a cigarette
being less than 1.6 mg. To test this claim, a sample of 20 of the firm’s cigarettes were
analyzed. If it is known that the standard deviation of a cigarette’s nicotine content is
.8 mg, what conclusions can be drawn, at the 5 percent level of significance, if the average
nicotine content of the 20 cigarettes is 1.54?

Note: The above raises the question of how we would know in advance that the standard
deviation is .8. One possibility is that the variation in a cigarette’s nicotine content is due
to variability in the amount of tobacco in each cigarette and not on the method of curing
that is used. Hence, the standard deviation can be known from previous experience.

SOLUTION We must first decide on the appropriate null hypothesis. As was previously
noted, our approach to testing is not symmetric with respect to the null and the alternative
hypotheses since we consider only tests having the property that their probability of reject-
ing the null hypothesis when it is true will never exceed the significance level . Thus,
whereas rejection of the null hypothesis is a strong statement about the data not being
consistent with this hypothesis, an analogous statement cannot be made when the null
hypothesis is accepted. Hence, since in the preceding example we would like to endorse
the producer’s claims only when there is substantial evidence for it, we should take this
_claim as the alternative hypothesis.
That is, we should test

Hy:nu>1.6 versus Hi:u<16

Now, the value of the test statistic is

V(X — po)lo = +/20(1.54 — 1.6)/.8 = —.336
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and so the p-value is given by

p-value = P{Z < —.336}, Z ~N(0,1)
= .368

Since this value is greater than .05, the foregoing data do not enable us to reject, at the .05
percent level of significance, the hypothesis that the mean nicotine content exceeds 1.6
mg. In other words, the evidence, although supporting the cigarette producer’s claim, is
not strong enough to prove that claim. B

REMARKS

(a) There is a direct analogy between confidence interval estimation and hypothesis testing.
For instance, for a normal population having mean x and known variance o 2. we have
shown in Section 7.3 that a 100(1 — &) percent confidence interval for j is given by

(o2 (o}
n e (E - Za/2j/’~;,z+za/2ﬁ)

where % is the observed sample mean. More formally, the preceding confidence interval
statement is equivalent to

_ o — o
P{M€<X—Za/2ﬁ» +Za/2ﬁ)}=1“0l

Hence, if it = f0, then the probability that o will fall in the interval

— g — g
X — Za/Zﬁ;X +Za/2ﬁ

is 1 — a, implying that a significance level o test of Ho : 1 = po versus Hi:p# pois
to reject Hy when

— g — g
Mo ¢ X — zgin—=,X + zan2

¥ )

Similarly, since a 100(1 — ) percent one-sided confidence interval for p is given by

e (y_za%,oo)

it follows that an _oz-level significance test of Hy : 0 < o versus Hi @ it > o is to reject
Hoy when g & (X — zq0/4/n, 00) — that is, when o < X — 200 1/n.
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—_ n
BLE 8.1 X1,.... %, Is a Sample from a N'(1t, 0%) Population g Is Known X = Y. X;/n

i=1

: Significance
H, H, Test Statistic 7S Level o Test p-Valueif TS=¢
©= o 1 # 1o VX — po)lo Reject if | TS| > zyn 2P{Z > [z}
=< o w> 1o X — pg)lo Reject if 75 > z, P{Z > 1)
n> o n< (o X — po)lo Reject if 78 < —zy P{Z <t}

Z is a standard normal random variable.

(b) A Remark on Robustness A test that performs well even when the underlying
assumptions on which it is based are violated is said to be robust. For instance, the tests
of Sections 8.3.1 and 8.3.1.1 were derived under the assumptlon that the underlying
population distribution is normal with known variance o2, However, in deriving these
tests, this assumption was used only to conclude that X also has a normal distribution.
But, by the central limit theorem, it follows that for a reasonably large sample size, X will
approximately have a normal distribution no matter what the underlying distribution. Thus
we can conclude that these tests will be relatively robust for any population distribution
with variance o2,

Table 8.1 summarizes the tests of this subsection.

8.3.2 Case oF UNKNOWN VARIANCE: THE ¢-TEST

Up to now we have supposed that the only unknown parameter of the normal population
distribution is 1ts mean. However, the more common situation is one where the mean u
and variance 0% are both unknown. Let us suppose this to be the case and again consider a
test of the hypothesis that the mean is equal to some specified value j19. That is, consider

a test of
Hy: = po
versus the alternative
Hytp# o
It should be noted that the null hypothesis is not a simple hypothesis since it does not

specify the value of o2

As before, it seems reasonable to reject Hy when the sample mean X is far from .
However, how far away it need be to justify rejection will depend on the variance o'2.
Recall that when the value of 02 was known, the test called for rejecting Ho when [X — 10|
exceeded zy/20/./n or, equivalently, when

X —
a/f

> Zg/2
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Now when o2 is no longer known, it seems reasonable to estimate it by

> = X)
g2 _ =

n—1

and then to reject Hy when

X — 1o

NG

is large.
To determine how large a value of the statistic

VX = o)
S

to require for rejection, in order that the resulting test have significance level &, we must
determine the probability distribution of this statistic when Hy is true. However, as shown
in Section 6.5, the statistic 7', defined by

V(X — o)

T =
S

has, when it = j19, a ¢-distribution with 7» — 1 degrees of freedom. Hence,

X = o)

S <tyon-1{ =1—0 (8.3.11)

P;LO —ta/2n—1 =

where 7421 is the 100 &t/2 upper percentile value of the t-distribution with n— 1 degrees
of freedom. (That is, P{Ty—1 = tapn_1} = P{Ty—1 < —tajzn—1} = a/2 when T,
has a ¢-distribution with 7z — 1 degrees of freedom.) From Equation 8.3.11 we see that the
appropriate significance level o test of

Hy:pn=po versus Hy o # 1o

is, when o2 is unknown, to

X —
accept Hp if ﬂS—M—O) =< tu/2,n—1
(8.3.12)
X —
reject Hy if :/——7;(—5“&9‘2 > taf2,n—1
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FIGURE 8.3 The two-sided r-test.

The test defined by Equation 8.3.12 is called a two-sided t-test. It is pictorially illustrated
in Figure 8.3.

If we let £ denote the observed value of the test statistic 7 = V(X — 110)/S, then the
p-value of the test is the probability that | 7'| would exceed |#] when Hy is true. That is,
the p-value is the probability that the absolute value of a #-random variable with 7 — 1
degrees of freedom would exceed |7|. The test then calls for rejection at all significance
levels higher than the p-value and acceptance at all lower significance levels.

Program 8.3.2 computes the value of the test statistic and the corresponding p-value.
It can be applied both for one- and two-sided tests. (The one-sided material will be
presented shortly.)

EXAMPLE 8.3g  Among a clinic’s patients having blood cholesterol levels ranging in the
medium to high range (at least 220 milliliters per deciliter of serum), volunteers were
recruited to test a new drug designed to reduce blood cholesterol. A group of 50 volunteers
was given the drug for 1 month and the changes in their blood cholesterol levels were
noted. If the average change was a reduction of 14.8 with a sample standard deviation of
6.4, what conclusions can be drawn?

SOLUTION Let us start by testing the hypothesis that the change could be due solely to
chance — that is, that the 50 changes constitute a normal sample with mean 0. Because
the value of the 7-statistic used to test the hypothesis that a normal mean is equal to 0 is

T =nXIS=+/5014.8/6.4 = 16.352

it is clear that we should reject the hypothesis that the changes were solely due to chance.
Unfortunately, however, we are not justified at this point in concluding that the changes
were due to the specific drug used and not to some other possibility. For instance, it is
well known that any medication received by a patient (whether or not this medication is
directly relevant to the patient’s suffering) often leads to an improvement in the patient’s
condition — the so-called placebo effect. Also, another possibility that may need to be
taken into account would be the weather conditions during the month of testing, for it is
certainly conceivable that this affects blood cholesterol level. Indeed, it must be concluded
that the foregoing was a very pootly designed experiment, for in order to test whether
a specific treatment has an effect on a disease that may be affected by many things, we
should try to design the experiment so as to neutralize all other possible causes. The
accepted approach for accomplishing this is to divide the volunteers at random into two
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groups — one group to receive the drug and the other to receive a placebo (that is, a tablet
that looks and tastes like the actual drug but has no physiological effect). The volunteers
should not be told whether they are in the actual or control group, and indeed it is best if
even the clinicians do not have this information (the so-called double-blind test) so as not
to allow their own biases to play a role. Since the two groups are chosen at random from
among the volunteers, we can now hope that on average all factors affecting the two groups
will be the same except that one received the actual drug and the other a placebo. Hence,
any difference in performance between the groups can be attributed o the drug. W

EXAMPLE 8.3h A public health official claims that the mean home water use is 350 gallons
a day. To verify this claim, a study of 20 randomly selected homes was instigated with the
result that the average daily water uses of these 20 homes were as follows:

340 344 362 375
356 386 354 364
332 402 340 355
362 322 372 324
318 360 338 370

Do the data contradict the official’s claim?

SOLUTION To determine if the data contradict the official’s claim, we need to test
Hy: n =350 versus Hy:p # 350

This can be accomplished by running Program 8.3.2 or, if it is incovenient to utilize, by
noting first that the sample mean and sample standard deviation of the preceding data set

arec
X = 353.8, S =21.8478

Thus, the value of the test statistic is

/20(3.8)

= =.7778
21.8478 77

Because this is less than #0519 = 1.730, the null hypothesis is accepted at the 10 percent
level of significance. Indeed, the p-value of the test data is

p—value = P{]T19| > 7778} = ZP{ T19 > 7778} = 4462

indicating that the null hypothesis would be accepted at any reasonable significance level,
and thus that the data are not inconsistent with the claim of the health official. B

We can use a one-sided #-test to test the hypothesis

Ho: = o (or Hy : b < o)
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against the one-sided alternative
Hy:p> o

The significance level « test is to

” «/Z()—(—/Lo)<

accept  Hj 5 = fan—1
e (8.3.13)
reject Hp if —\/%(—S_M—Oz > fy 1

If /n(X — 110)/S = v, then the p-value of the test is the probability that a #-random
variable with 7 — 1 degrees of freedom would be at least as large as .
The significance level « test of

Hoy = o (or Hy : it > pg)

versus the alternative
Hy o< o

is to

V(X — po) -
S

T
reject  Hy EA£&3£Q<_%P1

accept Hy if

— oy, n—1

The p-value of this test is the probability that a z-random variable with 7» — 1 degrees of
freedom would be less than or equal to the observed value of V(X — 1)/S.

EXAMPLE 8.3i The manufacturer of 2 new fiberglass tire claims that its average life will be
at least 40,000 miles. To verify this claim a sample of 12 tires is tested, with their lifetimes
(in 1,000s of miles) being as follows:

Tie 1 2 3 4 5 6 7 8 9 10 11 12
Life 36.1 40.2 33.8 385 42 35.8 37 41 36.8 372 33 36

Test the manufacturer’s claim at the 5 percent level of significance.

SOLUTION To determine whether the foregoing data are consistent with che hypothesis
that the mean life is at least 40,000 miles, we will test

Hy : > 40,000 versus Hi < 40,000
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A computation gives that
X =37.2833,  §=27319

and so the value of the test statistic is
Y 12(37.2833 — 40)
N 2.7319

Since this is less than —zgs.11 = —1.796, the null hypothesis is rejected at the 5 percent
level of significance. Indeed, the p-value of the test data is

= —3.4448

p-value = P{T11 < —3.4448} = P{Ty1 > 3.4448} = .0028

indicating that the manufacturer’s claim would be rejected at any significance level greater

than .003. H

The preceding could also have been obtained by using Program 8.3.2, as illustrated in
Figure 8.4.

This program computes the p-value when testing that a normal
population whose variance is unknown has mean equal to i

Sample size = 12 j

Data Values

Data value=

Enter the value of 1

Is the alternative hypothesis Is the alternative that the mean
@® One-Sided O Is greater than g
? ?
O Two-Sided @ Is less than i

The value of the t-statistic is —3.4448
The p-value is 0.0028

FIGURE 8.4
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EXAMPLE 8.3j In a single-server queueing system in which customers arrive according to a
Poisson process, the long-run average queueing delay per customer depends on the service
distribution through its mean and variance. Indeed, if 14 is the mean service time, and o2
is the variance of a service time, then the average amount of time that a customer spends
waiting in queue is given by

Au* +0?)
2(1 — Ap)

provided that Ay < 1, where A is the arrival rate. (The average delay is infinite if
Ap = 1.) As can be seen by this formula, the average delay is quite large when w is only
slightly smaller than 1/, where, since A is the arrival raze, 1/2 is the average time between
arrivals.

Suppose that the owner of a service station will hire a second server if it can be shown
that the average service time exceeds 8 minutes. The following data give the service times
(in minutes) of 28 customers of this queueing system. Do they indicate that the mean
service time is greater than 8 minutes?

8.6,9.4,5.0,4.4,3.7,11.4,10.0,7.6,14.4,12.2,11.0, 14.4,9.3, 10.5,
10.3,7.7,8.3,6.4,9.2,5.7,7.9,9.4,9.0, 13.3, 11.6, 10.0, 9.5, 6.6

SOLUTION Let us use the preceding data to test the null hypothesis that the mean service
time is less than or equal to 8 minutes. A small p-value will then be strong evidence
that the mean service time is greater than 8 minutes. Running Program 8.3.2 on these
data shows that the value of the test statistic is 2.257, with a resulting p-value of .016.
Such a small p-value is certainly strong evidence that the mean service time exceeds

8 minutes. H

Table 8.2 summarizes the tests of this subsection.

o n
TABLE 8.2 X1,....X, Is a Sample from a N(u,c?) Population o2 Is Unknown X = > X;/n
i=1

2= 304 - XPn— 1)

i=l1

Test Significance p-Value if
Hy H Statistic 7S Level a Test I5=1¢
1= o I # wo VX — po)lS Reject if | 7S] > #3201 2P{Ty—1 > |t}
= o H> po VX = po)lS Reject if 78 > 14,51 PATy—1 > 1}
K= Ko W< po VX = no)lS Rejectif 7§ < —#y,,,—1 P{Ty—1 < ¢}

Tou—1 is a t-random variable with n — 1 degrees of freedom: P{Ty_1 > ty 51} = .
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8.4 TESTING THE EQUALITY OF MEANS OF TWO
NORMAL POPULATIONS

A common situation faced by a practicing engineer is one in which she must decide whether
two different approaches lead to the same solution. Often such a situation can be modeled
as a test of the hypothesis that two normal populations have the same mean value.

8.4.1 Case oF KNOWN VARIANCES

Suppose that X1, ..., X,and ¥7,..., Yy are independent samples from normal populations
having unknown means i, and u, but known variances ze and O'),z. Let us consider the
problem of testing the hypothesis

Hy @ ey = 1y

versus the alternative
Hy ot e # My

Since X is an estimate of [y and Y of ty, it follows that X — Y can be used to estimate
Mx — 4y Hence, because the null hypothesis can be written as Hy : tx — ity = 0, it seems
reasonable to reject it when X — Y is far from zero. That is, the form of the test should
be to

reject Ho if X -Y|>c¢

- (8.4.1)
accept Hy if X —Y|=<c

for some suitably chosen value c.

To determine that value of ¢ that would result in the test in Equations 8.4.1 having
a significance level o, we need determine the distribution of X — Y when Hj is true.
However, as was shown in Section 7.3.2,

2 2
— — o q,
X—Y~N<ux—uy,~—; +—y>

m

which implies that

T — (e — ,
s — 1) wro, 1) (8.4.2)

2 o?

I | ¥

n m
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has a standard normal distribution; and thus

-Y

>

Py y—2an £ ————=<zypn{ =1—-u (8.4.3)
2 0
g,
_x + s
n m

From Equation 8.4.3, we obtain that the significance level « test of Hy : i, = [y versus
Hy oy # Iy is

X -7
accept Hy if ——I-—I = zq2
[o2in+ Gyz/m
X-Y
reject Hy if | | = 2a/2

[oiin+o}im
Program 8.4.1 will compute the value of the test statistic (X — Y) / [o2In+ U},z/ m.

EXAMPLE 8.4a Two new methods for producing a tire have been proposed. To ascertain
which is superior, a tire manufacturer produces a sample of 10 tires using the first method
and a sample of 8 using the second. The first set is to be road tested at location A and the
second at location B. It is known from past experience that the lifetime of a tire that is
road tested at one of these locations is normally distributed with a mean life due to the tire
but with a variance due (for the most part) to the location. Specifically, it is known that
the lifetimes of tires tested at location A are normal with standard deviation equal to 4,000
kilometers, whereas those tested at location B are normal with o = 6,000 kilometers. If the
manufacturer is interested in testing the hypothesis that there is no appreciable difference
in the mean life of tires produced by either method, what conclusion should be drawn at
the 5 percent level of significance if the resulting data are as given in Table 8.3?

TABLE 8.3 Tire Lives in Units of 100 Kilometers

Tires Tested at A Tires Tested at B

61.1 62.2
58.2 56.6
62.3 66.4
64 56.2
59.7 57 .4
66.2 58.4
57.8 57.6
61.4 65.4
62.2

63.6
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SOLUTION A simple computation (or the use of Program 8.4.1) shows that the value of
the test statistic is .066. For such a small value of the test statistic (which has a standard
normal distribution when Hy is true), it is clear that the null hypothesis is accepted. H

It follows from Equation 8.4.1 that a test of the hypothesis Ho : ptx = iy (or Hy :
ty < [y) against the one-sided alternative A1 : f1x > ji, would be to

2 2

5 o gy

accept Hy if X —Y <z =+ =
n m

— 02 O’},2

reject Hy if X =Y > zgy =— + —
n m

8.4.2 Case oF UNKNOWN VARIANCES

Suppose again that Xi, ..., X, and Y1, ..., Y, are independent samples from normal
pp g P 1%

populations having respective parameters (iLy, ze) and (i, g}?), but now suppose that all
four parameters are unknown. We will once again consider a test of

Ho @ e = 14y versus Hy e # 14y

To determine a significance level & test of Hy we will need to make the additional
assumption that the unknown variances o and 0]2 are equal. Let o2 denote their
value — that is,

As before, we would like to reject Hy when X — Y is “far” from zero. To determine
how far from zero it need be, let

X —X)?
52:i:1
x n—1

Y (Y —Y)?
52:i=1
) m—1

denote the sample variances of the two samples. Then, as was shown in Section 7.3.2,

5(—_ Y — (/Lx - ,U«y)
S;(l/n—{— 1/m)

~ tytm—2
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K Area = ¢ Area = o

vta,k 0 toe,k

FIGURE 8.5 Density of a t-random variable with k degrees of freedom.

where S]%, the pooled estimator of the common variance 02, is given by

o_ (n = 1S+ (m— 1S}
I n+m—2 %
. i1
Hence, when Hj is true, and so jt, — ty = 0, the statistic
X-v
/Sg(l/n + 1/m)

has a z-distribution with 7 + m — 2 degrees of freedom. From this, it follows that we can

T

test the hypothesis that u, = Hy as follows:

accept Hy if |7 < Lo)2,n4-m—2

reject Hy if T > typptm—2

where #4/2 51m—2 is the 100 &/2 percentile point of a #-random variable with 7 4 m — 2
degrees of freedom (sce Figure 8.5).
Alternatively, the test can be run by determining the p-value. If 7" is observed to equal
v, then the resulting p-value of the test of Hy against Hj is given by
p-value = P{| T,y 2] = |v]}
= 2P{Tn+m~2 = |V|}

where 77,4 ,,—2 is a r-random variable having 7 + m — 2 degrees of freedom.
If we are interested in testing the one-sided hypothesis

Ho @ e <y versus Hy e > 1y

then Hy will be rejected at large values of 7. Thus the significance level @ test is to

reject Hy if T >ty ypm—2

not reject  Hy  otherwise

T e
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If the value of the test statistic 7" is v, then the p-value is given by
p-value = P{Ty 2 > v}
Program 8.4.2 computes both the value of the test statistic and the corresponding p-value.

EXAMPLE 8.4b Twenty-two volunteersata cold research institute caughta cold after having
been exposed to various cold viruses. A random selection of 10 of these volunteers was
given tablets containing 1 gram of vitamin C. These tablets were taken four times a day.
The control group consisting of the other 12 volunteers was given placebo tablets that
looked and tasted exactly the same as the vitamin C tablets. This was continued for each
volunteer until a doctor, who did not know if the volunteer was receiving the vitamin C
or the placebo tablets, decided that the volunteer was no longer suffering from the cold.
The length of time the cold lasted was then recorded.
At the end of this experiment, the following data resulted.

Treated with Vitamin C Treated with Placebo

5.5 6.5
6.0 6.0
7.0 8.5
6.0 7.0
7.5 6.5
6.0 8.0
7.5 7.5
5.5 6.5
7.0 7.5
6.5 6.0

8.5

7.0

Do the data listed prove that taking 4 grams daily of vitamin C reduces the mean length
of time a cold lasts? At what level of significance?

SOLUTION To prove the above hypothesis, we would need to reject the null hypothesis in
a test of .

Ho @y < he versus Hy oy > e

where /i, is the mean time a cold lasts when the vitamin C tablets are taken and w, is
the mean time when the placebo is taken. Assuming that the variance of the length of the
cold is the same for the vitamin C patients and the placebo patients, we test the above by
running Program 8.4.2. This yields the information shown in Figure 8.6. Thus 4y would
be rejected at the 5 percent level of significance.
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Samlize =10

Data value =

List 2 { Sample size = 12 ‘

Data value =

Is the alternative .
hypothesis © One-Sided )
O Two-Sided '
Is the alternative
that the mean O Is greater than he mean
of sample 1 ® Is less than of sample 27

The value of the t-statistic is —1.898695
The p-value is 0.03607

FIGURE 8.6

Of course, if it were not convenient to run Program 8.4.2 then we could have performed
the test by first computing the values of the statistics X,Y, Sj, Syz, and S;. where the X
sample corresponds to those receiving vitamin C and the Y sample to those receiving
a placebo. These computations would give the values

X = 6.450, Y =7.125
S;=.581, S =.778

Therefore,

e e e e e e

9 11
§2 = =852+ 8% = 689
» =507 T 0%

T e e
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and the value of the test statistic is

B — 675 B
-~ J/.689(1710 + 1/12)

75 —-1.90

Since #9.500 = 1.725, the null hypothesis is rejected at the 5 percent level of significance.
That is, at the 5 percent level of significance the evidence is significant in establishing that
vitamin C reduces the mean time that a cold persists. B

EXAMPLE 8.4c Reconsider Example 8.4a, but now suppose that the population variances

are unknown but equal.

SOLUTION Using Program 8.4.2 yields that the value of the test statistic is 1.028, and the

resulting p-value is
p-value = P{T15 > 1.028} = .3192

Thus, the null hypothesis is accepted at any significance level less than .3192 M

8.4.3 Case oF UNKNOWN AND UNEQUAL VARIANCES

Let us now suppose that the population variances o2 and (7},2 are not only unknown but

also cannot be considered to be equal. In this situation, since 53 is the natural estimator
of CTXZ and 572 of Uyz, it would seem reasonable to base our test of

Ho @ e = 14y versus Hy @ # 1y

on the test statistic

Ay (8.4.4)

2 2

Sx S)’

2 _I_ .

n m
However, the foregoing has a complicated distribution, which, even when Hy is true,
depends on the unknown parameters, and thus cannot be generally employed. The one
situation in which we can utilize the statistic of Equation 8.4.4 is when 7 and m are
both large. In such a case, it can be shown that when Hp is true Equation 8.4.4 will
have approximately a standard normal distribution. Hence, when 7 and  are large an

approximate level o test of Ho @ by = 1, versus Hy @ iy 7 [y is tO

X—-Y
accept Hy if —zyn < ————= < zan
2
S .Y
m

reject  otherwise
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The problem of determining an exact level o test of the hypothesis that the means of
two normal populations, having unknown and not necessarily equal variances, are equal is
known as the Behrens-Fisher problem. There is no completely satisfactory solution known.

Table 8.4 presents the two-sided tests of this section.

TABLE 84 X3,...,X, IsaSample froma N (u;, (712) Population; Y1, ..., Yy, Is a Sample from a N (3, 022)

Population
The Two Population Samples Are Independent

To Test
Hy : g = pg versus Hy @ g # o
Assumption Test Statistic 7S Significance Level o Test  p-Value if 7S= ¢

01,02 known --»jf—% Reject if | 7S] > zq/2 2P(Z > |t]}
\Joilntoyim
o1 = o X-v
P D)S2 4 (m—1)52
\/——l( DSy +m=1)$ 1Un+1/m

Reject if | TS| > tappim—2 2P Typm—2 = It}
nt+m—2

n, m large XV Reject if | 7S] > 20/ 2P(Z > 1))

/SHn+S3m

8.4.4 THE PAIRED ¢-TEST

Suppose we are interested in determining whether the installation of a certain antipollution
device will affect a car’s mileage. To test this, a collection of 7 cars that do not have this
device are gathered. Fach car’s mileage per gallon is then determined both before and after
the device is installed. How can we test the hypothesis that the antipollution control has
no effect on gas consumption?

The data can be described by the 7 pairs (X;, Y;),7 = 1, ..., n, where X; is the gas
consumption of the 7th car before installation of the pollution control device, and Y; of
the same car after installation. It is important to note that, since each of the 7 cars will
be inherently different, we cannot treat X7, ..., X, and Y1, ..., Y, as being independent
samples. For example, if we know that Xj is large (say, 40 miles per gallon), we would
certainly expect that ¥1 would also probably be large. Thus, we cannot employ the earlier
methods presented in this section.

One way in which we can test the hypothesis that the antipollution device does not
affect gas mileage is to let the data consist of each car’s difference in gas mileage. That is,
lee W; =X;—Y;,i =1, ..., n Now, if there is no effect from the device, it should follow
that the W; would have mean 0. Hence, we can test the hypothesis of no effect by testing

Hy:pn,=0 versus Hytpy #0

where W1, ..., W, are assumed to be a sample from a normal population having unknown
mean (4, and unknown variance auzj. But the #-test described in Section 8.3.2 shows that
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this can be tested by

. . w
accepting Hy if —itypa-1 < \/-;;—S— < tyl2n—1

w
rejecting  Hy otherwise

EXAMPLE 8.4d An industrial safety program was recently instituted in the computer chip
industry. The average weekly loss (averaged over 1 month) in man-hours due to accidents

“in 10 similar plants both before and after the program are as follows:

Plant Before After A-B

1 30.5 23 -7.5
2 18.5 21 2.5
3 24.5 22 -2.5
4 32 28.5 -3.5
5 16 14.5 -1.5
6 15 15.5 .5
7 23.5 24.5 1
8 25.5 21 —4.5
9 28 23.5 —4.5
10 18 16.5 —-1.5

Determine, at the 5 percent level of significance, whether the safety program has been
proven to be effective.

SOLUTION To determine this, we will test
Hy:puqg—up=>0 versus Hy:pug—up<0

because this will enable us to see whether the null hypothesis that the safety program has
not had a beneficial effect is a reasonable possibility. To test this, we run Program 8.3.2,
which gives the value of the test statistic as —2.266, with

p-value = P{T, < —2.266} = .025

Since the p-value is less than .05, the hypothesis that the safety program has not been
effective is rejected and so we can conclude that its effectiveness has been established (at
least for any significance level greater than .025). B

Note that the paired-sample 7-test can be used even though the samples are not
independent and the population variances are unequal.



