14.381 Fall 2004

14.381 Waiver Examination

Instructions: This is a closed book exam. You have 90 minutes for the exam. Answer as many questions as possible. Partial answers get partial credit. Please write legibly. *Good luck!*

Let X_1, \ldots, X_n be a random sample from a continuous (uniform) distribution with pdf

$$f(x|\theta) = \frac{1}{\theta} 1 (0 \le x \le \theta),$$

where $\theta \in \Theta = (0, \infty)$ is an unknown parameter and $1(\cdot)$ is the indicator function.

- (a) Show that $\hat{\theta}_{MM} = 2\bar{X}$ is a method of moments estimator of θ (where $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$).
- (b) Is $\hat{\theta}_{MM}$ unbiased? If "yes", is $\hat{\theta}_{MM}$ a minimum variance unbiased estimator? If "no", find a function $g_{MM}\left(\cdot\right)$, not depending on θ , such that $g_{MM}\left(\hat{\theta}_{MM}\right)$ is an unbiased estimator.
- (c) Show that $\hat{\theta}_{MM}$ is a consistent estimator.
- (d) Find the limiting distribution of $\sqrt{n} \left(\hat{\theta}_{MM} \theta \right)$ (as $n \to \infty$).
- (e) Find the likelihood function and find the maximum likelihood estimator $\hat{\theta}_{ML}$ of θ .
- (f) Find the pdf of $\hat{\theta}_{ML}$.
- (g) Is $\hat{\theta}_{ML}$ unbiased? If "yes", is $\hat{\theta}_{ML}$ a minimum variance unbiased estimator? If "no", find a function $g_{ML}(\cdot)$, not depending on θ , such that $g_{ML}(\hat{\theta}_{ML})$ is an unbiased estimator.
- (h) Show that $\hat{\theta}_{ML}$ is a consistent estimator.
- (i) Let $PMC\left(\hat{\theta}_{MM}, \hat{\theta}_{ML}\right) = P\left(\left|\hat{\theta}_{MM} \theta\right| \le \left|\hat{\theta}_{ML} \theta\right|\right)$ denote the Pitman measure of closeness of $\hat{\theta}_{MM}$ relative to $\hat{\theta}_{ML}$. Find the limit of $PMC\left(\hat{\theta}_{MM}, \hat{\theta}_{ML}\right)$ (as $n \to \infty$). [Hint: Find the limiting distribution of $\sqrt{n}\left(\hat{\theta}_{ML} \theta\right)$ and use the result from (d).]
- (j) Consider the problem of testing $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$ (where θ_0 is some constant). Show that the test which rejects for large values of $\hat{\theta}_{ML}$ is the uniformly most powerful test (within the class of tests of the same level).