14.381 Final Examination

Fall, 2000

Instructions: This is a closed book exam. You have 180 minutes to answer the questions. Good luck!

1. Let X be a $N(0, \sigma^2)$ random variable conditional on σ^2 with conditional density function

 $f_{X|\sigma^2}(x|\sigma^2) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp(-\frac{1}{2}x^2/\sigma^2).$

Let σ^2 have a marginal distribution of a χ^2_1 with density function

$$f_{\sigma^2}(z) = \frac{1}{\sqrt{2\Gamma(1/2)}} z^{-1/2} \exp(-\frac{z}{2}).$$

- a) Find $E(X|\sigma^2)$ and E(X).
- **b)** Find $E(X^2|\sigma^2)$ and $E(X^2)$.

(Hint: use known facts about the normal distribution).

- 2. Let X and Y be random variables with a joint density $f_{X,Y}(x,y)$.
 - a) Show that $Var(X) \geq Var(E(X|Y))$.
 - **b)** Show that $Var(X) \ge E(Var(X|Y))$.
 - c) Show that Var(X) = Var(E(X|Y)) + E(Var(X|Y)).
- 3. Let e = (1, 0, 1, 0, ...)' be an $n \times 1$ vector and $a_n = n/2$ if n is even and $a_n = (n+1)/2$ when n is odd. Define $M = I_n ee'/a_n$.
 - a) Show that M is symmetric and idempotent.
 - b) Find the rank of M. State clearly how you obtain the result.
 - c) Let X be an $n \times 1$ vector of *iid* standard normal random variables with density $(2\pi)^{-1/2} \exp(-\frac{1}{2}x_i^2)$ for the *i*-th element of X. Find the distribution of X'MX.
- 4. Let $X_t, t = 1, ..., 2n$ be a sample drawn from a distribution such that

$$\left(\begin{array}{c} X_{2i-1} \\ X_{2i} \end{array}\right) \sim N(0, \Sigma)$$

where

$$\Sigma = \left[egin{array}{cc} 1 &
ho \
ho & 1 \end{array}
ight]$$

for $|\rho| \leq 1$ and i = 1, ..., n. Assume that (X_{2i-1}, X_{2i}) is independent of (X_{2j-1}, X_{2j}) for all $i \neq j$.

a) Find the constant a such that

$$\frac{1}{n} \sum_{t=1}^{2n} X_t^2 = a + o_p(1).$$

Make sure that all the assumptions of WLLN's and SLLN's that you might use are satisfied.

b) Find the limiting distribution of

$$S_n = \frac{1}{\sqrt{n}} \sum_{t=1}^{2n} X_t$$

- c) Find an approximation to the distribution of $\exp(S_n)$ where S_n is defined in b).
- 5. Let X be a $n \times k$ matrix of constants, β a $k \times 1$ vector of coefficients and ε a $n \times 1$ vector of normal random variables with joint density

$$f(\varepsilon) = (2\pi)^{-n/2} \exp(-\frac{1}{2}\varepsilon'\varepsilon).$$

Let $y = X\beta + \varepsilon$ where y is the $n \times 1$ vector of dependent observations. Assume that you know y and X (this is the data) and you want to find the maximum likelihood estimator $\hat{\beta}$ of β .

- a) Write down the likelihood function for the parameter β (Hint: write ε as a function of β).
- b) Find the maximum likelihood (ML) estimator $\hat{\beta}$ of β . Is this estimator unbiased? Does it achieve the Cramer-Rao Lowerbound?

For the following questions assume that ε is a vector of *iid* random variables not necessarily from a normal distribution such that $E\varepsilon_i = 0$ and $E\varepsilon_i^2 = 1$ for the *i*-th element ε_i and for all i = 1, ..., n. Assume that $\lim_{n \to \infty} n^{-1} X' X = M$ where M is a positive definite matrix. Also assume that $n^{-1/2} X' \varepsilon \stackrel{d}{\to} N(0, M)$.

- c) Prove that $\hat{\beta}$ is consistent under these assumptions.
- d) Find the limiting distribution of $\sqrt{n}(\hat{\beta}-\beta)$. Carefully state all the arguments used.
- e) Find the limiting distribution of the statistic $(\hat{\beta} \beta)' X' X (\hat{\beta} \beta)$. Make sure to state clearly all known theorems you are using to prove your result.