14.381 Solutions Problem Set 7 Statistics Fall, 2004

TA: José Tessada (tessada@mit.edu)

1. Let X_i = weight of the ith booklet in package. The X_i s are iid with $E\left(X_i\right)=1$ and $Var\left(X_i\right)=0.05^2$. We want to approximate $\Pr\left(\sum_{i=1}^{100}X_i>100.4\right)=\Pr\left(\sum_{i=1}^{100}\frac{X_i}{100}>1.004\right)=\Pr\left(\overline{X}>1.004\right)$.

By the CLT,
$$\Pr\left(\overline{X} > 1.004\right) \approx \Pr\left(Z > \frac{(1.004-1)}{(0.05/10)}\right) = \Pr\left(Z > 0.8\right) = 0.2119.$$

The only assumption we need is the weight of the different booklets being independent. The first two moments exist, so we can apply a CLT for idependent and identically distributed (iid) data.

2.

(a) For any $\varepsilon > 0$,

$$\Pr\left(\left|\sqrt{X_n} - \sqrt{a}\right| > \varepsilon\right) = \Pr\left(\left|\sqrt{X_n} - \sqrt{a}\right| \left|\sqrt{X_n} + \sqrt{a}\right| > \varepsilon \left|\sqrt{X_n} + \sqrt{a}\right|\right)$$
$$= \Pr\left(\left|X_n - a\right| > \varepsilon \left|\sqrt{X_n} + \sqrt{a}\right|\right)$$
$$\leq \Pr\left(\left|X_n - a\right| > \varepsilon \sqrt{a}\right) \to 0,$$

as $n \to \infty$, since $X_n \stackrel{p}{\to} a$. Thus, $\sqrt{X_n} \stackrel{p}{\to} \sqrt{a}$.

(b) For any $\varepsilon > 0$,

$$\Pr\left(\left|\frac{a}{X_n} - 1\right| \le \varepsilon\right) = \Pr\left(\frac{a}{1 + \varepsilon} \le X_n \le \frac{a}{1 - \varepsilon}\right)$$

$$= \Pr\left(a - \frac{a\varepsilon}{1 + \varepsilon} \le X_n \le a + \frac{a\varepsilon}{1 - \varepsilon}\right)$$

$$\geq \Pr\left(a - \frac{a\varepsilon}{1 + \varepsilon} \le X_n \le a + \frac{a\varepsilon}{1 + \varepsilon}\right) \quad \text{because} \quad \left(a + \frac{a\varepsilon}{1 + \varepsilon} < a + \frac{a\varepsilon}{1 - \varepsilon}\right)$$

$$= \Pr\left(|X_n - a| \le \frac{a\varepsilon}{1 + \varepsilon}\right) \to 1$$

as $n \to \infty$, since $X_n \xrightarrow{p} a$. Thus $\frac{a}{X_n} \xrightarrow{p} 1$.

(c)
$$S^{2} \xrightarrow{p} \sigma^{2}$$
. By (a), $S_{n} = \sqrt{S_{n}^{2}} \xrightarrow{p} \sqrt{\sigma^{2}} = \sigma$. By (b), $\frac{\sigma}{S_{n}} \xrightarrow{p} 1$.

3. Find the method of moments estimator of the following parameters:

(a) λ for the case of an exponential distribution: $f(x|\theta) = \frac{1}{\lambda} \exp(-x/\lambda)$, $0 \le x < \infty$, $\lambda > 0$; We know that if $X \sim Exponential(\lambda)$, then $E(X) = \lambda$. The methods of moments estimator is

$$\widehat{\lambda}_{MM} = \overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}.$$

(b) σ for $N(\mu, \sigma^2)$ when μ is known;

In the case of the Normal distribution the first moment E(X) is not giving us any information as we know the value of μ . We can use higher order moments, in particular, $E(X^2) = \sigma^2 + \mu^2$, so we have a methods of moments estimator using the second order moments:

$$\widehat{\sigma}_{MM} = \begin{cases} \sqrt{\frac{1}{n} \left(\sum_{i=1}^{n} X_i^2 \right) - \mu^2} & \text{if } \frac{1}{n} \left(\sum_{i=1}^{n} X_i^2 \right) \ge \mu^2 \\ \text{not defined} & \text{if } \frac{1}{n} \left(\sum_{i=1}^{n} X_i^2 \right) < \mu^2 \end{cases}.$$

If you happen to be in the second case you can try higher order moments.

(c) θ if the pdf is $f(x|\theta) = \theta x^{-2}$, $0 < \theta \le x < \infty$.

We cannot find a method of moments estimator using any moment like $E\left(X^{k}\right)$, $k\geq1$. To see this note the following

$$E(X^{k}) = \int_{\theta}^{\infty} x^{k} \theta x^{-2} dx$$
$$= \int_{\theta}^{\infty} x^{k-2} \theta dx$$
$$\geq \int_{\theta}^{\infty} \theta^{k-1} dx$$

and the last integral does not exist for $k \geq 1$. However, it is easy to see that $E\left(X^{-1}\right)$ exists

$$\begin{split} E\left(X^{k}\right) &= \int_{\theta}^{\infty} x^{-1}\theta x^{-2} dx \\ &= \int_{\theta}^{\infty} x^{-3}\theta dx \\ &= \left. -\frac{\theta}{2} x^{-2} \right|_{\theta}^{\infty} = \frac{1}{2\theta}. \end{split}$$

Thus, we can define a method of moments estimator for θ as

$$\widehat{\theta}_{MM} = \frac{n}{2} \frac{1}{\sum_{i=1}^{n} \frac{1}{X_i}}.$$