14.381 Problem Set 8 Statistics Fall, 2004

TA: José Tessada (tessada@mit.edu)

Due Monday November 15, 6:00pm (in E52-204).

- 1. Find the maximum likelihood estimator of the following parameters:
 - (a) λ for the case of an exponential distribution: $f(x|\theta) = \frac{1}{\lambda} \exp(-x/\lambda)$, $0 \le x < \infty$, $\lambda > 0$;
 - (b) μ and σ for $N(\mu, \sigma^2)$;
 - (c) θ if the pdf is $f(x|\theta) = \theta x^{-2}$, $0 < \theta \le x < \infty$.
- 2. C&B 7.7
- 3. C&B 7.12
- 4. Suppose that the random variables $y_1, ..., y_n$ satisfy

$$y_i = \beta x_i + \varepsilon_i, \qquad i = 1, ..., n,$$

where $x_1,...,x_n$ are fixed constants, and $\varepsilon_1,...,\varepsilon_n$ are $iid\ N\left(0,\sigma^2\right),\ \sigma^2$ unknown.

- (a) Find the MLE of β , and show that it is an unbiased estimator of β ;
- (b) Find the distribution of the MLE of β . (Hint: note that $\widehat{\beta}_{ML}$ can be written as a linear combination of the y_i , in particular $\widehat{\beta}_{ML} = \sum_{i=1}^n a_i y_i$).