
14.383 Econometrics II
Handout1 1.2: Asymptotic Theory

TA: Matthew C. Harding
mharding@mit.edu

In this handout I present a very brief summary of asymptotic theory, including the main theorems and
results used when deriving asymptotic distributions in most of the topics we have covered so far2 .

1 Modes of Convergence

When we think about convergence, we usually have in mind a sequence that converges to a limit X, i.e.
a sequence Xn that after some n > N , stays in some neighborhood of X. When thinking of convergence
of random variables we talk about convergence of a sequence of functions. However, the usual notions of
convergence for a sequence of functions are not very useful in this case. In probability theory there are four
di¤erent ways to measure convergence:

� Almost-Sure Convergence: Probabilistic version of pointwise convergence. We only require that the
set on which Xn(!) converges has probability 1. The notation is the following

P (! 2 
 : Xn(!)! X(!)) = 1 (1)

or also written as
P (lim

n
Xn = X) = 1 (2)

or Xn !a:s: X.

� Convergence in Probability : a sequence Xn converges in probability to X if 8� > 0 and � > 0 9 an
N(�; �) such that P (jXn �Xj � �) < � 8 n > N(�; �). Equivalently one can write

lim
n
P (jXn �Xj > �) = 0 8� > 0 (3)

which is also written as Xn !p X.

� Convergence in rth Mean: If EjXnjr <1 for all n and

E(jXn �Xjr)! 0 as n!1 (4)

then Xn !r X.

� Convergence in distribution: I think the easiest way to de�ne this concept is using the following
condition. Xn converges in distribution to X if

Fn(x) = P (Xn � x)! P (X � x) = F (x) (5)

for all points at which F (x) = P (X � x) is continuous. The usual notation is Xn !d X.

Lemma 1 If Xn !p X then Xn !d X but the converse does not hold in general. If Xn !d c where c is a
constant then implies Xn !p c.

Lemma 2 If r > s � 1 and Xn !r X then Xn !s X. In addition, if Xn !r X then Xn !p X but the
converse is false in general.

1Thanks to Jose Tessada.
2 I will not mention anything about the stochastic orders of magnitude, if you feel like reading something about them, check

the handout on asymptotic theory we covered in 14.381.
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2 Some Asymptotic Theory

� Continuous Mapping Theorem: (CMT) If P (X 2 C) = 1; g(x) is continuous on C, and Xn !d X then
g(Xn)!d g(X).

There also exists a convergence in probability version of the CMT.

� Slutzky Theorem: If Xn !d X and Yn !p c, where c is a constant, then YnXn !d cX and Yn+Xn !d

c+X.

There is also a version of this for the case when both sequences converge in probability. This is Slutzky
Theorem for convergence in probability, and comes from the fact that you can apply the CMT to
any function of Xn and Yn. This is true because of the following property holds for convergence in
probability:

Xn !p X and Yn !p Y ,
�
Xn
Y n

�
!p

�
X
Y

�
Be careful because this property doesn�t hold for convergence in distributions, i.e. it is not enough to
look at the marginals to prove joint convergence.

This result follows from the CMT and the fact that Xn !d X and Yn !p c) (Xn; Yn)!d (X; c).

2.1 Laws of Large Numbers

Basically, a Law of Large Numbers (LLN) states the conditions for a sample and population averages to
be close to each other, i.e. when the sample average plims to the population average we are trying to
approximate3 .

� Khintchine�s LLN : If Yi are iid and E[kYik] <1 then Y !p E[Yi].

� Chebyshev�s LLN : If V ar(Y )! 0 then Y � E
�
Y
�
!p 0.

Notice that the main di¤erence between both LLN is that Chebyshev�s does not require the data to be
iid, but has less primitive conditions. In general, Khintchine�s is enough for many econometric problems
unless you really think you might have some kind of dependence in the observations4 .

2.2 Central Limit Theorems

The Central Limit Theorems (CLT) gives the conditions for sample averages to have an asymptotic normal
distribution. In general, if you have a sequence of random vectors Y1; Y2; : : : a CLT gives you the conditions
for p

n(Y � E
�
Y
�
)!d N(0; lim

n!1

�
nV ar(Y )

�
)

Beware of the fact that the previous statement requires the existence of the limit for this statement to be
valid. This can be relaxed so to be able to apply CLT to certain cases when this is not true.

� Lindberg-Levy CLT : if Yi are iid and E
�
kYik2

�
;1 then

p
n(Y � E

�
Y
�
)!d N(0; V ar(Yi))

This is the basic CLT for iid data, and should be su¢ cient for many cross-section or panel data ap-
plications. However, when the regressors have non-stochastic trends and we want to show that the t- and
F-statistics are valid asymptotically we need to weaken the iid assumption and we also need to allow for
nV ar(Y ) not to converge. Let 1(A) be the indicator function for the event A. Let Y1n; : : : ; Ynn be scalar

random variables where at least one is not constant, and Win = V ar(Y )
� 1
2
(Yin � E [Yin])

n
.

3 In this section I follow a handout prepared by W. Newey that Victor handed out in 14.382.
4 I am not sure of this, but probably you might worry about what LLN you use when you are doing some asymptotic analysis

of a panel estimator. Of course, in time series analysis it is a suicide to use Khintchine�s LLN.
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� Lindberg-Feller CLT : If for every n, Y1n; : : : ; Ynn are independent, and for every � > 0,
nX
i=1

E
�
1(jWinj > �)W 2

in

�
! 0, then

V ar(Y )�
1
2 (Y � E

�
Y
�
)!d N(0; 1):

If we want to use the Lindberg-Feller CLT with random vectors we can make use of the following:

� Cramer-Wold Device: If c0Yn !d c0Y for all c with kck = 1 then Yn !d Y .

So according to this, to prove joint convergence we just need to prove that every linear combination of
the random vector Yn converges. In this case, to apply the Lindberg-Feller CLT to a vector, need to prove
�rst that in fact jointly converges, and as it is explained before proving marginal convergence of each element
is not su¢ cient.
Finally, notice that independence of the observations is present in all of the primitive conditions for the

CLT and LLN stated here, that means that we cannot apply them to any example where we know this does
not hold. It can be relaxed but applying some limits to the degree of dependence; a very "informal" way to
explain it is to say that �too much correlation (=dependence) makes a LLN fail�.
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