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The Maximum Principle / Hamiltonian

The Hamiltonian is a useful recipe to solve dynamic, deterministic optimization problems.

The subsequent discussion follows the one in the appendix of Barro and Sala-i-Martin's (1995)

\Economic Growth".

The problem is given by

max
c(t)

V =

Z
T

0
v(k(t); c(t); t)dt

s:t: _k(t) = g(k(t); c(t); t); t 2 [0; T ]

k(0) = k0 (predetermined);

k(T )e�R(T )T
� 0:

The objective function is the integral over the payo� function v(). This payo� function depends,

at each instant of time, on the value of the control variable c(t) (the variable that the planner can

directly control, for example consumption in an optimal consumption/savings problem) and/or the

value of the state variable k(t) (the variable that the planner can not directly control, because

it is implied by the choice of the control variable, for example the level of assets in an optimal

consumption/savings problem) and/or time. Generally, the problem might involve several control

and/or state variables. The constraints state that: (1) At each moment the change in the state

variable depends on the state variable itself and/or the control variable and/or time; (2) the initial

level of the state variable is given; (3) the discounted value of the state variable at the end of the

planning horizon has to be weakly positive. (Alternatively the problem might state that this �nal

value has to be � z where z 6= 0.) R(s) denotes the average discount rate between time zero and

time s. If the planning horizon T is �nite, the last constraint can equivalently be stated as requiring

that k(T ) � 0. If the planning horizon is in�nite however (in which case the last constraint should

correctly read limt!1 k(t)e�R(t)t
� 0) we need to include the discounting part in the constraint:

This allows for negative values of k(t) as long as k(t) doesn't grow faster than the discount rate;

it does not allow for Ponzi schemes, i.e. paths of the state variable on which k(t) is negative and

grows at a rate faster than the discount rate.

Let's apply the machinery of solving a static nonlinear optimization problem: Set up the La-

grangian

L =

Z
T

0
v()dt+

Z
T

0
�(t)(g() � _k(t))dt+ �k(T )e�R(T )T :

We have introduced a continuum of multipliers �(t) for the dynamic constraint at each point in

time. We have also introduced a multiplier � for the terminal condition on the state variable.

To apply our standard Lagrangian recipe we had to di�erentiate the Lagrangian with respect

to c(t) and k(t). The problem is that we don't know how to di�erentiate _k(t) with respect to k(t).
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Integrating by parts helps: We can rewrite the Lagrangian as

L =

Z
T

0
v()dt +

Z
T

0
�(t)g()dt +

Z
T

0
_�(t)k(t)dt+ �(0)k0 � �(T )k(T ) + �k(T )e�R(T )T

where we also imposed the initial condition on the state variable. We de�ne the Hamiltonian

function H(k; c; t; �) as the expression inside the �rst two integrals: H(k; c; t; �) � v(k; c; t) +

� g(k; c; t): We therefore have

L =

Z
T

0
(H(k(t); c(t); t) + _�(t)k(t))dt + �(0)k0 � �(T )k(T ) + �k(T )e�R(T )T :

To �nd the optimality conditions we apply the same trick as Euler did in developing the calculus

of variation: Assume we knew the optimal path for the control variable, �c(t) say. Associated with

this optimal path of the control variable is a resulting path for the state variable, �k(t) say. We

consider perturbations around these optimal paths. These perturbations are the (yet unknown)

optimal paths plus some scalar � times some perturbation functions p1(t) and p2(t):

c(t) = �c(t) + � p1(t); k(t) = �k(t) + � p2(t); k(T ) = �k(T ) + � dk(T ):

(For any choice of p1(t), p2(t) follows from the dynamic constraint that governs the evolution of

k(t).)

The central insight is that at the optimum (i.e. at � = 0) the derivative of L with respect to �

must be zero. That is, around the optimal paths for the control and the state variables, a slight

perturbation doesn't a�ect the value of the problem. The intuition is the same as for a �rst order

condition in the static optimization context.

We therefore have the condition

@ �L=@� = 0:

This condition has to hold for any possible perturbation functions p1(t) and p2(t). Now we just

have to apply the chain rule. At the optimum the �rst order condition takes the form

@L=@� =

Z
T

0
([@H=@c]p1(t) + [@H=@k + _�]p2(t))dt+ [�e�R(T )T

� �(T )]dk(T ) = 0:

Since this condition has to hold for any possible perturbation functions p1(t) and p2(t) we can

conclude that the following must be true:

@H=@c = 0;

@H=@k = � _�;

�e�R(T )T = �(T ):

(With multiple control and/or state variables these �rst order conditions have to hold with respect

to each of the variables.) Note that the last of the �rst order conditions, in combination with the

terminal condition �k(T )e�R(T )T = 0, implies the \transversality condition"

�(T )k(T ) = 0:

In an in�nite horizon setup this condition reads

lim
t!1

�(t)k(t) = 0:
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So we have the following recipe to solve dynamic deterministic optimization problems: Relate

your speci�c problem to the general setup given above. Write down the problem in terms of the

Hamiltonian function. Derive the �rst order conditions. Using the dynamic constraint, simplify

those �rst order conditions. This gives a system of di�erential equations. The initial and terminal

conditions on k(t) pin then down the optimal paths.
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