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Abstract

These notes are freely based on Harald Uhlig (see his Web Page), Sar-
gent and Ljungqvist (2000), Christiano (2001) and Woody Allen (1972).

1 Introduction

The purpose of this hand out is to show the different ways of solving a RBC
model, using the standard Ramsey Model with constant labor supply as a bench-
mark. In particular I will try to make clear how Dynamic Programming and
Log-Linearization are used to solve those problems. Problems sets 1 and 2 will
be a complement to this hand out.

2 The RBC Setup with constant labor supply

2.1 Timing, Preferences and Technology

There is a representative individual who makes all the inter-temporal decisions.
She owns the capital stock (��) and maximizes her expected lifetime utility.
The timing within time � is:

1. The new stock of capital stock is ��, and the shocks are realized.

2. Spot markets open. Firms demand capital services and labor. The indi-
viduals supply these services. The clearing price for capital is �� and the
hourly wage is ��.

3. The total income of the individuals is ���� +����. She allocates op-
timally between consumption and investment. The labor endowment is
normalized to be 1.1

1I will use ��() for �( �Ω�)�

1



max��

 ∞X
�=0

���( e	�+�)


Subject to e��+1 = ��

e�� +f�� − e	�

In this simple setup, firms simply maximize profits period by period. Con-
sistent with perfect competition, we assume that the production function has
constant returns to scale in capital and labor. Firms purchase the capital stock
and use it to produce the output. In the process of production, the capital
stock depreciates by 
. After production they need to repay the households
��
e�� units of output. They have (1− 
) e�� units of capital left, so they need to

pay (�� + 
 − 1) per unit of capital. This is the USER COST of CAPITAL.n
��� e��

o
= argmax

�� e� �� (���� e�)− (�� + 
 − 1) e� −f���

�� captures trend growth in labor productivity.

��+1 = ���

Finally, �� is a stochastic process.

2.2 De-Trending

Here is the difference with 14.451. With Marios, you have studied the growth
process ��. Here we simply remove it because we are interested in fluctuations
around the balanced growth path. I will consider the special case of the CES
utility function,

�( e	�) =
�

� − 1
e	 (�−1)

�
� �

where � is the elasticity of intertemporal substitution.
We can then re-scale the whole model by dividing all the trending variables

by �� : 	� =
e��

��

max��

 ∞X
�=0

��

µ
�

� − 1	
(�−1)

�
�

¶
subject to

���+1 = ���� +�� −	��

where � = � ∗ � (�−1)
�
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3 Solving

3.1 Workers/Savers: labor supply, consumption and sav-
ing

The Bellman Equation for the representative individual is:

� (��� ��) = max

½
�

� − 1	
(�−1)

�
� + ��� [� (��+1� ��+1)]

¾
Subject to:

���+1 = ���� +�� −	�

	� is the control variable

3.1.1 Dynamic Programming with 	� as control, �� as state.

First Order Condition:

	
−1
�

� + ���

���+1

�	�| {z }
− 1

�

∗ � 0
�+1

 = 0⇐⇒ 	
−1
�

� =
�

�
��

£
� 0
�+1

¤

Envelope Condition (��)

� 0
� =

�

�
����

£
� 0
�+1

¤
where � 0

�+1 =
�	 (��+1�
�+1)

���+1
�

3.1.2 Method of Lagrange

Even though dynamic programming is popular these days, it is not the most
efficient method to obtain the first order conditions. Instead, consider the La-
grangian, with one multiplier per period. The multipliers are random variables.

max
��������+1

�0

" ∞X
�=0

��

µ
�

� − 1	
(�−1)

�
� + �� (���� +�� −	� − ���+1)

¶#

You get directly the right equations, and you discover that the Lagrange multi-
plier is simply the marginal utility of consumption!

	
−1
�

� = ��

��� = ��� [��+1��+1]
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3.1.3 Household Equations

• Inter-temporal Substitution (	�)

	
−1
�

� =
�

�
��

£
� 0
�+1

¤
• Envelope Condition (��)

� 0
� =

�

�
����

£
� 0
�+1

¤
Combining them, we see that � 0

� = ��	
−1
�

� and we obtain the well-known
Euler Equation:

	
−1
�

� =
�

�
��

h
��+1	

−1
�

�+1

i
3.2 Firms: labor and capital demands

Using the fact that the production function is homogenous of degree one (con-
stant return to scale), we can first remove the trend Γ and then define �(�) =
 (1� �) to obtain:

{�����} = argmax
���

����

µ
�

�

¶
− (�� + 
 − 1)� −���

Labor Demand:
��

��

= �� − ��

��

� 0� = �� −���
0
�

Capital Demand:
�� + 
 − 1

��

= � 0 (��)

Note that there are no profits since �� +�� = ��� at any point in time.

3.3 Market Clearing and Information Structure

�� + 
 − 1
��

= � 0 (��)

��

��

= �� −���
0
�

	
−1
�

� =
�

�
��

h
��+1	

−1
�

�+1

i
���+1 = ��� (��)−	� + (1− 
)��

Ω� = {��}�≤�
How should we think of these equations? Conceptually, one needs to distinguish
exogenous and endogenous variables.
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• Exogenous Variables: those are the stochastic processes. The standard
��	 model considers only technology shocks, {��}�≥0. At time �, the
agents have observed the last realization of the stochastic process, �� and
they have in mind the whole history of shocks Ω� = {��}�≤�. Why?
Because they want to know what will happen tomorrow, as reflected in
the expectation term of the Euler Equation: �� = � [� | Ω�].

• Endogenous Variables are all the others. But we need to separate predeter-
mined variables from other variables. Predetermined variables are known
at the beginning of time � and won’t change during the period. They are
not exogenous however since they are the results of past choices. Here,
the predetermined variable is the capital stock ��. All other variables are
going to adjust endogenously within the period: ��� ��� 	�.

What are we looking for? We are looking for a decision rule that maps the
exogenous variables into the endogenous variables. In fact since we know the
law of motion of ��, we can simply look for a decision rule that maps (Ω����)
into (��� ��� 	�). The solution is therefore:

[��� ��� 	�] = z (Ω����)

���+1 = �� −	� + (1− 
)��

Ω� = {��}�≤�
Now we want to learn about the properties of z (Ω����).

4 Non Stochastic Steady State

The steady state is found by imposing all variables to be constant. The steady
state technology is normalized to � = 1. In this case, there is no forecasting
issue and we can ignore the information set Ω�. The unknowns are (������	).
You can understand the steady state in the following way:
From the Euler Equation and constant consumption in steady state we have

� =
�

�

which implies that
� = � 0 (�)− 
 + 1�

This equation gives us the capital stock, and plugging the capital stock into the
wage equation � = � (�)−�� 0 (�) we have the wage rate.
The Euler Equation gives us the steady state return on saving � that is

consistent with a flat consumption profile. In equilibrium, this must equal the
required return on capital, which in turn pins down the capital stock. The wage
� is then simply the marginal product of labor at this level of �. Note that
this implies that the equilibrium real wage is independent of the labor supply!
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Given that � is known, we are left with one equation to find out the steady
state value of 	,

	

�
=

� (�)

�
− � + 1− 


5 The ��� with Dynamic Programming

We can use DP tools to solve the model. Only in very special cases we can
do it analytically. For an example of that see the solutions of Problem Set 1,
where you are asked to solve the model for the special case of log preferences,
Cobb-Douglas production function, and log-Normal productivity shocks, first
iterating the policy function and then iterating the value function. And when
you try to solve the model numerically, you still have to make assumptions over
the distribution of the random shocks. A convenient assumption is that of a
Markov Set up (see below). Let’s now characterize a more general case than
that of Problem set 1. You will work on the numerical solution of this problem
on Problem Set 2.
Assume a Cobb-Douglas production function, and set the trend growth � to

one:
�� = ���

1−�
�

We want to solve the model numerically with dynamic programming: compute
the value function � (���) and the policy function � 0 (�) assuming that �
follows a two states Markov process. Look at dynamics far away from steady
state.

� (���) = max
�0
{¡��1−� + (1− 
)� −�0¢�−1

� + �� [� (�0� � 0)]}

I now introduce two useful notations. First, the Kronecker product: if ����(�) =
[�� �] and ����(�) = [��  ] then ���� [�⊗�] = [��� � ] and:

� =

·
!11 !12
!21 !22

¸
�⊗� =

·
!11� !12�
!21� !22�

¸
We also need to work with vectorized objects (just stack the columns into one
big vector):

"�#(�) =


!11
!21
!12
!22
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5.1 What is a Markov setup?

For more details, see Sargent and Ljungqvist. Basically you need two ingredi-
ents: a transition matrix $ and a state space % = (�1� ����).

1. $ has to be a square matrix � ∗ � with only positive entries and each
row must add up to one

2. Imagine a stochastic process &� that takes its values on the grid %. At
any time �, &� is equal to exactly one of the state ��. We say that &� is
Markovian with transition matrix $ if and only if

' (�(&�+1 = �� | &� = �) =$�

I now give you two important “tricks”. They are used in the programs so
make sure you understand what they mean.

5.1.1 Evolution of a Distribution

Suppose you know that the distribution of &� is )�, in the sense that � (�(&� =
&) = )�. What is the distribution of &�+1? Answer:

)�+1 =$ 0)�

5.1.2 Net present values

Consider the dynamic programming setup. I give you the flow of utility to be
in state �: *(�) and I give you the continuation values from tomorrow on � (+).
What is the total value ,� (�) of being in state � today? Answer:

,� (�) = * (�) + �
X
�

$�� (+)

And in vector form:
,� = *+ �$ ∗ �

5.2 Dynamic Programming with Markovian Shocks

Consider the stochastic growth problem with fixed labor, and assume that the
technology parameter � evolves according to a �� states Markov process with
transition matrix $ . (See LS pp. 41)

"�# (� ) = max

½
�

� − 1
¡
��1−� + (1− 
)� −�0¢�−1

� + � ($ ⊗ 1��) ∗ � 0
¾

To do dynamic programming you need to choose a grid for the capital stock, say

of size ��. Then, define the matrix
�

�−1
¡
��1−� + (1− 
)� −�0¢�−1

� , which
is [�� ∗ ��� ��] because it is the product of the two grids for (���) today and
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�0 tomorrow (the order of the rows is: �- rows for � = �1, then �� rows for
� = �2, etc... until � = ��� , which gives you a total of �� ∗ �� rows). � is the
matrix of size [��� ��] of the values associated with the different states (���):
��� is the value of having the capital stock - when the productivity is ��. 1��

is a vector of ones of size �� ∗1 so that$ ⊗1�� has size [�� ∗ ��� ��] so that the
product ($ ⊗ 1��

) ∗ � 0 is conformable and the result is a [�� ∗ ��� ��] matrix
that can be added to �

�−1
¡
��1−� + (1− 
)� −�0¢�−1

� . Then, for each line,
the max operation picks up the best column.

5.2.1 Iterating on the Value Function

Start with �0 = 0 and iterate over + :

"�# (��+1) = max

½
�

� − 1
¡
��1−� + (1− 
)� −� 0¢�−1

� + � ($ ⊗ 1��
) ∗ � 0

�

¾
�

until you converge.

5.2.2 Iterating on the Policy Function

This one is a bit more subtle, and also much more powerful (See LS pp. 44).
Start with �0 = 0 and iterate over +:

1. Given the step (+ − 1) value function, find the optimal policy rule. A
policy rule is a mapping from the state space �� ∗ �� into the decision
space �� that tells you, for each state (-� �) which future capital stock (-0)
you should get. Therefore a decision rule can be represented by a vector
of size [�� ∗ ��� 1] where �*.��(�) is the point on the grid where the rule
takes you if you start from state �:

�*.�� = argmax

½
�

� − 1
¡
��1−� + (1− 
)� −�0¢�−1

� + � ($ ⊗ 1��
) ∗ � 0

�−1

¾
2. Find the NPV of the policy rule you have just computed (this is the new
step). To do so you need first to compute the flow of utils that the rule
delivers, *(�*.��)� if you use it forever, and then solve forward using the
Bellman Equation to find the new value function ��. For that, define

/�(-� -
0)

��∗��
=

½
1 if �*.��(-� �) = -0

0 otherwise
�

that is, /� takes value one for the value that is optimal according to
the policy rule when we start from - and the state is �� Define / ="

/1
�������

/��

#
Then

"�# (��) = *(�*.��) + � ∗ �.(#- ($�,���%) ∗ "�# (��)
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where ,���% is a matrix that contains [/ / ���/] and so its dimension
is [�� ∗ ��� �� ∗ ��] , and �.(#- is a block by block multiplication. For
instance, when $ is 2 by 2, and � is 2� by 2�:

� =

·
�11 �12
�21 �22

¸
Then

�.(#- ($��) =

·
011 ∗�11 012 ∗�12
021 ∗�21 022 ∗�22

¸
Thus we have that

"�# (��) = [1 − � ∗ �.(#- ($�,���%)]−1 ∗ *(�*.��)�

3. Start step + with the new value function from last step. Iterate to converge
in both steps.

6 Log-Linear RBC

6.1 Mathematical Notes

For a variable 2�, define the log deviation from its steady state value 2:

&� = log(2�)− log (2)
Then, for small deviation (&�of the order of a few percents), we get:

2� = 2��� ' 2(1 + &�)

Keep in mind that the trick in economics is always to work with elasticities and
shares! So, whatever the pain, make sure they appear everywhere. Here are a
few examples:

2��� = 2� ���+��

2��� −2�

2�
' &� + 3�

2� + �� ' 2(1 + &�) + � (1 + 3�)

2� + �� − (2 + � )

2 + �
' 2

2 + �
&� +

�

2 + �
3�

And for function of many variables:

�(2�� ��) = �(2�� ) +2��&� + � �� 3�
4�

�
=

�(2�� ��)− �(2�� )

�(2�� )
= 5���&� + 5��� 3�

5��� =
�� (2�� )

�2
∗ 2

� (2�� )

5��� =
�� (2�� )

��
∗ �

� (2�� )
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Using these tools, we can now log-linearize the ��	 model.

6.2 Log-Linear Approximation

As an example I will follow the article by Campbell on the reading list to
proceed later with a general set up. I will follow his notation so that you don’t
get confused when going over the article. In what follows, lower case denotes
log of the variable.

6.2.1 Campbell (1994)

The author assumes CES utility function and C-D production function with
Harrod’s Neutral technical change. In particular assume

�� = ��
� �

1−�
� ⇔ ��

��

=

µ
��

��

¶�

where I normalized labor to 1 and �� is the cyclical component of the technology,
you can think of ��

� as our �� before. Then it is easy to derive the following
expressions

�� − (1− 
) = (1− 6)

µ
��

��

¶�

⇐⇒
µ
��

��

¶
=

·
�� − (1− 
)

1− 6

¸ 1
�

	
−1
�

� = ���

h
��+1	

−1
�

�+1

i
�

In a Balanced Growth Path as we saw before we have

7
1
� = ���

where 7 = ��+1

��
� or taking logs (note this expression is exact, not an approxi-

mation),
8 = � log(�) + � �

In the equation for the
¡
��

��

¢
� approximating � as 1 +  �µ

�

�

¶
'
·
 + 


1− 6

¸ 1
�

�

and using this in the production function we getµ
�

�

¶
'
·
 + 


1− 6

¸
�

Remember that ��+1 = �� −	� + (1− 
)�� which implies that in steady state

	

�
=

�
�
�
�

=
�
�
−7+ 1− 


�
�

'
�
�
− 1− 8 + 1− 


�
�

'
�+�
1−� − (8 + 
)

�+�
1−�

=

1− (1− 6)(8 + 
)

 + 

�
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Now we want to loglinearize our system around this steady state. Let’s start
with the capital accumulation equation. Divide by �� to get

��+1

��

− (1− 
) =
��
��

− 	�

��

�

Rewrite it in the following way,

��+1−��=∆��+1

exp{
z }| {
log

µ
��+1

��

¶
}− (1− 6) = exp{log

µ
��
��

¶
}− exp{log

µ
	�

��

¶
} =

exp{∆-�+1}− (1− 6) = exp{3� − -�}− exp{#� − -�} = exp{3� − -�} ∗ [1− exp{#� − 3�}] �
and taking logs we get

log [exp{∆-�+1}− (1− 6)] = 3� − -� + log [1− exp{#� − 3�}] �
Now we are going to do a first order Taylor approximation of �(∆-�+1) =
log [exp{∆-�+1}− (1− 6)] and 9(#�−3�) = log [1− exp{#� − 3�}] � Notice that
∆-�+1 = 8 in the BGP. Thus �(8) = log [exp{8}− (1− 6)] ' log [1 + 8 − (1− 6)] =

log = [8 + 6)] ' 0� �(8)0 = exp(�)
exp(�)−(1−�) ' 1+�

�+� � 9(#− 3) = log
h
(1−�)(�+�)

�+�

i
' 0�

Finally, 9(# − 3)0 = − exp{�−�}
[1−exp{�−�}] =

−��
	

1−�
	

' 1 − �+�
(1−�)(�+�) � Putting everything

together we get that

1 + 8

8 + 

∆-�+1 ' 3� − -� +

·
1−  + 


(1− 6)(8 + 
)

¸
{#� − 3�}�

Notice that from the production function we have y� = 6!�+(1−6)-�� Replacing
that inside the expression above and rearranging terms we get

-�+1 ' �1-� + �2!� + (1− �1 − �2)#��

where �1 =
1+�
1+� � �2 =

�(�+�)
(1−�)(1+�) �Now to the Euler condition. We can rewrite

it (you can see how to get here in the class notes) in logs as

��∆#�+1 = ��� �+1�

Now take the expression �� = (1−6)
¡
��

��

¢�
+(1− 
)⇔ �� = (1−6) exp(6!�−

6-�)) + (1− 
)� and take logs to get

 �+1 = log ((1− 6) exp(6!� − 6-�)) + (1− 
)) = �(!� − -�)�

Note that �(!− -) ' 0 and �(!− -)0 ' �(�+�)
1+� � given the steady state value of

�
�
� and plugging that into the equation above we get

 �+1 ' �3(!�+1 − -�+1)� �3 =
6( + 
)

1 +  
�
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and using this in the EE,

��∆#�+1 = ��3��(!�+1 − -�+1)�

Now we need to specify a process for ��� which in the article is !�+1 = :!�+5�+1�
an ��(1)� To recap we have

��∆#�+1 = ��3��(!�+1 − -�+1)

-�+1 ' �1-� + �2!� + (1− �1 − �2)#�

!�+1 = :!� + 5�̄1�

Now we calibrate the model. What it is usually done is the following. All the
�0� are function of 8�  � 6, and 
� From 14,451 you now possible values for all
this, so we ”calibrated” the �0�� With that, you use the model to find values of
: and the variance of the error term such that you fit some moments of the real
data (which ones, you choose them, the more the better). Once we have that
we want to do impulse-response exercises to see what does our model predict
the variables will do when there is a productivity shock. There are several
ways to do that using our system above, but a convenient one is the method of
undetermined coefficients.

6.2.2 The method of undetermined coefficients

We guess the following:
#� = ;��-� + ;��!��

where ;�� denotes the elasticity of # with respect to &� By substituting this into
the equation for -�+1 we get

-�+1 = ;��-� + ;��!��

where ;�� = �1 + (1− �1 − �2);�� and ;�� = �2 + (1− �1 − �2);��� Note that
from our guess, ∆#�+1 = ;��∆-� + ;��∆!�� and substituting that into the EE
we get,

;��∆-�+1 + ;����!�+1 = ��3��!�+1 − ��3-�+1�

Note that we drop �� in front of -�+1 because given that we guess -�+1 =
;��-�+;��!� it is no longer uncertain as of time �� Substitute now the expression
-�+1 = ;��-� + ;��!� to get

;��(;�� − 1)-� + ;��;��!� + ;��;����!�+1 = ��3��!�+1− ��3;��-�− ��3;��!��

and using the fact that ;�� = �1+(1−�1−�2);�� and ;�� = �2+(1−�1−�2);��
and ��!�+1 = :!� we get

;��(�1 − 1 + (1− �1 − �2);��)-� + ;��[(�2 + (1− �1 − �2);��)]!� + ;��(:− 1)!� =
��3:!� − ��3[�1 + (1− �1 − �2);��]-� − ��3[�2 + (1− �1 − �2);��]!��
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And now we are almost done. Equate the coefficients on -� to get the quadratic
equation

<2;
2
�� +<1;�� +<0�

with <2 = 1 − �1 − �2� <1 = �1 − 1 + ��3(1 − �1 − �2)� and <3 = ��3�1�
This gives us 2 solutions. Which one is the right one? It depends on your
calibration. In the article they assume �1 = 1� Given that -�+1 = ;��-�+ ;��!�
and ;�� = �1+(1−�1−�2);��, remember from the recitation about ARMA that
we need the coefficient in front of -� to be smaller than one for the equation
to converge. Thus we need the positive solution of ;��� Once we have this
parameter, we equate the coefficients on !�, use our ;�� to get

;�� =
−;���2 + ��3(:− �2)

:− 1 + (1− �1 − �2)(;�� + ��3)�

Now we can do impulse-response exercises. What does that model imply for the
process of income capital and consumption? Remember

!�+1 = :!� + 5�+1�⇔ !�+1 =
5�+1

(1− :>)
�

-�+1 = ;��-� + ;��!� ⇔ -�+1 =
;��!�

(1− ;��>)

Putting both equations together

-�+1 =
;��

(1− ;��>)

5�+1
(1− :>)

⇔ (1− ;��>)(1− :>)-�+1 = 5�+1

or -� follows an ��(2)� For output remember

3� = 6!� + (1− 6)-�

!�+1 =
5�+1

(1− :>)

-�+1 =
;��

(1− ;��>)

5�+1
(1− :>)

�

Putting everything together

3� =
6+ [(1− 6);�� − 6;��]>

(1− ;��>)(1− :>)
5��

output follows an ��$�(2� 1)� Now you can do by yourselves the same for #��
What do you get? What does all that mean?

7 The method of undetermined coefficients

7.1 A general Setup
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Let �� be the vector of endogenous state variables (capital stock,...), &� the
endogenous control variables (consumption, investment, flexible prices...) and
�� the stochastic processes. To avoid confusion, matrices are named using two
capitalized letters. There are two conceptually different sets of equations. The
first set describes the law of motion of the economy, together with the market
equilibrium conditions: I use$ for these matrices (Motion and Market). In the
second set, the equations are forward looking and they involve the expectations
of the agents: I use  for these equations (Forward). Finally, we have the
equations for the stochastic process ��.

$%1 ∗ ��+1 +$% ∗ �� +$2 ∗ &� +$� ∗ �� = 0

�� [%2��+2 + %1��+1 + %�� + 21&�+1 + 2&� + �1��+1 + ���] = 0

��+1 − �� ∗ �� − 5�+1 = 0

Where $2 has full rank and �� [5�+1] = 0�
In our setup, we use -� as the only endogenous state variable �� = [-�], and

the vector &� = [#�;  �;��;?�] of endogenous variables so that % = �1 =
� = 0 and

21 =
£ −1 1 0 0

¤
2 =

£
1 0 0 0

¤
And

$%1 =


−�
0
0
0

 ;$% =


1− 
 + (1− 6) �

�
�0(1−�)

�

0
60

 ;$� =


�
�

1
0
−1


And

$2 =


−	@� 0 6�

�
0

0 0 −�0(1−�)
�

−1
:1−�

�
0 1 −:1−�

�

0 �
�+�−1 −60 0


Keep in mind that we are looking for the map from the state space (-�� ��) to
the law of motion (-�+1) and the policy rule (#�). Because we are interested in
small movements around the steady state, we make a linear approximation to
the map and we are looking for matrices such that:

��+1 = b% ∗ �� + c%� ∗ �� (1)

&� = b2 ∗ �� +d2� ∗ ��
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7.2 A General Solution Method Based on Uhlig 97

7.2.1 Some Notations

The idea is to plug in the functional form 1 into the structural equations in
order to identify the unknown coefficients.
Let me introduce two matrices and two formulas. $2+ is the pseudo inverse

of $2. In MATLAB, $2+ = ���"($2). Since $2 has full rank, it is
simply:

$2+ = ($2 0$2)−1 ∗$2 0

$20 is the left null of $2 (more precisely the transpose of the null of $2 0

since MATLAB defines right nulls by default. $20 = (�*.. ($2 0))0 in MAT-
LAB terms). It is such that:

$20$2 = 0

And the most useful formula is:

"�#(� ∗2 ∗�) = (�0 ⊗�) ∗ "�#(2)

7.2.2 Some Results

Not surprisingly, b% is the hard one to get, and I’ll return to it soon. b% satisfies:
Ψ ∗ b%2 − Γ ∗ b% −Θ = 0

Where:

Ψ =

·
0

%2 − 21 ∗$2+ ∗$%1

¸
Γ =

·
$20 ∗$%1

21 ∗$2+ ∗$% − %1 + 2 ∗$2+ ∗$%1

¸
Θ =

·
$20 ∗$%

2 ∗$2+ ∗$% − %

¸
Suppose we know how to solve that big equation. Then we can determine all
the others. b2 satisfies

b2 = −$2+
³
$%1 ∗ b% +$%

´
And using 1
, the identity matrix of size ��, we can define:

� =

"
1
 ⊗$%1 1
 ⊗$2

��0 ⊗ %2 + 1
 ⊗
³
�2 ∗ b% + 21 ∗ b2 + %1

´
�� 0 ⊗ 21 + 1
 ⊗ 2

#

we can obtain c%� and d2� by:

� ∗
 "�#

³c%�´
"�#

³d2�
´  = −· "�# ($�)

"�# (�1 ∗ �� + �)

¸
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7.2.3 Solving the Matrix Quadratic Equation

...is a pain. Sometimes there is no solution, sometimes there is an infinity
of solutions, sometimes there is a unique solution. I always assume we are
lucky enough to have only one solution. Otherwise, sunspots and other strange
animals may appear.

Ψ ∗ b%2 − Γ ∗ b% −Θ = 0
Where all the matrices b%�Ψ�Γ�Θ are �- ∗ �-. We construct the 2�- ∗ 2�-
matrices Ξ and ∆ :

Ξ =

·
Γ Θ
1� 0

¸
∆ =

·
Ψ 0
0 1�

¸
Let {21� �	}=1��� and {21� �>}=1��� be the � generalized eigenvectors and
the � corresponding eigenvalues of Ξ with respect to ∆ in the sense that:

∀� = 1��� : Ξ ∗21� �	 = 21��> ∗∆ ∗21� �	

Let’s assume that there are exactly �- eigenvalues that are less than one (and
order them first). This means that the system is fully determined. If you
cannot find �- stable roots, there is something wrong in your model. If you
find more than �-, there are multiple rational expectation equilibria — i.e.,
there are more than one dynamic paths for the economy that are consistent
with rational expectations. Then we can construct the matrix b% as follows.
Each 21� �	 has length 2�-. Take the lower half of each of the �- stable
eigenvectors 21� �	�� ! and construct the matrices

Ω = [21� �	�� !]=1����

Then we finally obtainb% = Ω ∗ 4�!8(21� �> A 1) ∗Ω−1

7.3 Discussion of the Numerical Method

Thomas wrote the MATLAB programs that perform the above computations.
They seem to work well most of the time. They are fairly general in the sense
that they can handle essentially all the models for which you can compute the
steady state and log linearize around it. The main decision you need to make is
the choice of the state space. Basically, you need to make sure that it contains
all the required state variables, but no extras. In other word it must be minimal.
The choice of the state space is an economic one, not a computational one.
The results one obtains from the model are four matrices b%� b2� c%� and d2�.

To understand the meaning of the results however, we need to see what they
imply for the dynamics of the economy. In other words, we want to see how
the quantities and prices respond to an exogenous shock. This is done via the
study of impulse response functions.
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8 What the model has to say: Impulse Responses
and Second Moments

If you reach this point, you probably already have a headache so why not con-
tinue? We are almost done and ready to harvest the fruit of our effort. We have
the system of linear difference equations:

��+1 = b% ∗ �� + c%� ∗ ��
�� = �� ∗ ��−1 + 5�

&� = b2 ∗ �� +d2� ∗ ��
Keep in mind that �� is exogenously specified and that we have solved for b%
and c%� and for b2 and d2�. The last step is to find a simple way to visualize
the results. By far the most common way to do so is to plot impulse response
functions.

8.1 Impulse Responses

An impulse response gives you the answer to the following question: what hap-
pens after a shock to one of the components of the stochastic process 5� ? In
the simplest RBC model, there is only one shock (technology), but in general
there are many. We are interested in the full response of all the variables at all
future dates. This sounds like an ambitious goal but it is in fact quite easy. So
here is the idea. First, choose the shock you want to study (say shock �) and
assume that the shock happens at time � = 1.

51 =


0
���

51 = 1
���
0


Assume that at � = 0, the economy was in its steady state, where by definition
all the state variables are 0.

�0 = 0

�0 = 0

Right away we see that
�1 = 0

Why? � is a state variable and state variables do not jump, otherwise there is
something rotten in this kingdom. In terms of RBC, the capital stock at time �
does NOT react to the time � technology shock. Consumption and Investment
do react of course. The rest of the time � = 1 variables are easy to find:

�1 = 51

&1 = d2� ∗ 51
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So we can move to time � = 2. The idea of the IMPULSE response is to study
the effect of a ONE TIME shock to 5�. So we set {5�}�"1 = 0.

�2 = c%� ∗ �1
�2 = �� ∗ �1
&2 = b2 ∗ �2 +d2� ∗ �2

Repeat the same exercise and plot the paths of �� & and �.

8.2 Second Moments

Another thing one can do is to simulate the model. From the simulations, we can
see if the time series that the model delivers look like the ones we see in reality.
But you cannot really trust your eyes, so it is better to compute a few proper-
ties of the time series. To give a simple example, we have seen that business
cycles are characterized by co-movements of consumption, output, investment
and hours worked. In other words, these series are positively correlated in the
data. Are they also positively correlated in the model? We have also seen that
investment is much more volatile than output. Does the model deliver that
property? To answer these questions, we need to compute the variances and
covariances of the time series implied by the model. A very simple way to do
that is to simulate the model (Monte Carlo) and to compute the time series
properties of the simulated data. Another way to go is to compute the variance
covariance matrices directly from the system of linear equation using frequency
domain techniques. Either way, you end up computing the second moments
and if they look like the empirical ones, you claim victory of mankind over the
machines.

18


