2 Appendix: Sources of Cost Push Shocks

Variations in desired price markups.

Assume that the elasticity of substitution among goods varies over time, according to some stationary stochastic process $\{\epsilon_t\}$. Let the associated desired markup be given by $\mu_t \equiv \frac{\epsilon_t}{\epsilon_t - 1}$. One can show that the log-linearized price setting rule is then given by:

$$p_t^* = (1 - \beta\theta) \sum_{k=1}^{\infty} (\beta\theta)^k E_t \{\mu_{t+k} + mc_{t+k} + p_{t+k}\}$$
$$= (1 - \beta\theta) \sum_{k=1}^{\infty} (\beta\theta)^k E_t \{\widetilde{mc}_{t+k} + p_{t+k}\}$$

where $\widetilde{mc}_t \equiv mc_t + \mu_t$. The resulting inflation equation then becomes

$$\pi_t = \beta E_t \{\pi_{t+1}\} + \lambda \ \widetilde{mc}_t$$

= $\beta E_t \{\pi_{t+1}\} + \lambda \ \widehat{mc}_t + \lambda(\mu_t - \mu)$
= $\beta E_t \{\pi_{t+1}\} + \kappa \ (y_t - \overline{y}_t) + \lambda(\mu_t - \mu)$

where \overline{y}_t denotes the equilibrium level of output under a constant price markup μ .

Exogenous Variations in Wage Markups

In that case we still have $\pi_t = \beta E_t \{\pi_{t+1}\} + \lambda \ \widehat{mc}_t$, though now

$$mc_t = w_t - a_t$$

= $\mu_t^w + mrs_t - a_t$
= $\mu_t^w + (\sigma + \varphi)y_t - (1 + \varphi)a_t$

thus implying

$$\widehat{mc}_t = (\sigma + \varphi)(y_t - \overline{y}_t) + (\mu_t^w - \mu^w)$$

where \overline{y}_t denotes the equilibrium level of output under a constant price and wage markup.