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1. Staggered Price Setting: the Calvo Model

1.1. Optimal Price Setting and Aggregate Price Dynamics

We assume a continuum of firms indexed by ¢ € [0,1]. Each firm produces a
differentiated good, with a technology

Yi(i) = A, Ny(i) (1.1)

and faces an isoelastic demand schedule.

Following the formalism introduced in Calvo (1983), we assume that each firm
may reset its price only with probability 1 — 6 each period, independently of the
time elapsed since the last adjustment. Thus, each period a measure 1 — 8 of
producers reset their prices, while a fraction 6 keep their prices unchanged.

Aggregate prices follow the law of motion:
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implying

=(1-0) (p{ = pe—1) (1.2)

Let p; (i) denote the (log) price set by a firm i adjusting its price in period t.
If the were no constraints on the adjustment of prices the typical firm would set
a price according to the rule p; (i) = p + mcj(i) , for all ¢.

Under the Calvo price-setting structure p; (i) = pf (i) with probability 6" for
k=0,1,2, ... Hence when setting their price firms will have to be forward-looking.
In a neighborhood of the zero inflation steady state, the optimal price seting rule
can be shown to be given, up to a first order approximation, by:

o0
pi(i) = p+ (1= 56) D (89)" Enfmefy (i)} (13)

k=0
Thus, firms will set a price equal to a markup p over a weighted average of
expected future nominal marginal costs, with the weights associated with each




horizon k proportional to the probability that the chosen price remains effective
k periods ahead.!

Using the fact that all firms resetting prices in period ¢ will choose the same
price p; we can rewrite (1.3) as:
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where mc; = me; — me, and me = —pu.
More compactly:

p; = pi—1 = PO E{pi —pe} + (1= B0) mey +

Combined with (1.2), yields the inflation equation:
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where \ = ——-—(1_9)(91"59).

L A rigorous derivation of the optimal price-setting rule can be found in Yun (1996) or Wood-
ford (1996), among others.




1.1.1. Extension with Decreasing Returns

Suppose that the individual firm’s technology is given instead by

Yi(i) = Ay No(i)' ™

The optimal price-setting rule takes into account that marginal cost is no
longer common across firms:
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pili) =+ (1= 80) Y (80)" Eefmc}, .}

k=0

where mc}, ,, is the (log) marginal cost in period ¢ + k of a firm which last set its

price in period t. Notice that MCy 1 = Mg‘i’:" is given by
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Combining the latter expression with the optimal setting rule, and after some
tedious algebra, we can derive the inflation equation with the average real marginal
cost as a driving force:

MC itk = MCtif — o (Pt = Perr)
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where A\, = <A




1.2. Equilibrium
The equilibrium (log) real marginal cost is given by
me; = (0 +¢) ye— (L +¢) @

Under flezible prices, mc; = —p = mc, all t. We define the natural level of
output 7, implicitly by:

me=(0+¢) Yy — (1 +¢) a
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thus implying

= Yy + wa Qg
Thus, it follows that
mey = (0 +¢) (ye = U) (1.5)

where 1, — 7, = ¥ is referred to in the literature as the output gap.
Combining (1.5) with (1.4) we obtain the so called New Keynesian Phillips

Curve
T = /3 Et{'/'Tt+1} + K gt (16)

where k = Ao + @)
Notice that we can also rewrite now the IS equation in terms of the output

gap:

_ 1 7 m
be =7 (re = E{men} = 770) + E{yuia} (L.7)

where

T = p+ 0o B{AY4}
p— OIL‘a(l - /)a) at

is the natural rate of interest (i.e., the one that would obtain under flexible prices).

1.2.1. Extension

Derive the NKPC, the NIS equation and the money market condition in terms of
the output gap when the goods market clearing condition is given by y: = ¢; + g
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1.3. Equilibrium under a Simple Interest Rate Rule

Consider the simple interest rate rule:
re =+ Op Tt Py Ye (1.8)

where v; is an exogenous (possibly stochastic) component with mean p.
Combining (1.6), (1.7), and (1.8) we can represent the equilibrium conditions
by means of the following system of difference equations.

Ye | _ E{yes1} -
[ T :| = AT I: Et{ﬂ't-:];} } + BT (TTt - Ut) (19)
where
_ o 1— B, _ _ 1
AT:Q{U& /@—}—ﬁ(a—k(p’y)} ’ BT:Q[&}
and Q = 1

oty trp,
The solution to (1.9) is locally unique if Ap has both eigenvalues within the

unit circle. If we restrict ourselves to non-negative values for (¢,, ¢,) a necessary
and sufficient condition is given by:

k(b —1) = (1—8 >0
\¥m J o\ MYy 7

(9

which we assume to hold for the time being.




1.3.1. The Effects of an Exogenous Monetary Policy Shock

Let v; follow an AR(1) process
Ut = P, V-1 T &

Calibration (Walsh (2003)): p, = 0.5, ¢, = 1.5, ¢, =0, 3=099,0c=p=1,
6 =038.
Dynamic effects of an exogenous increase in the nominal rate (Figure 5.3).

1.3.2. The Effects of an Exogenous Non-Monetary Shock

Need to determine implied process for the natural rate and simulate effects of
shock (set v; = p)

Ezample: technology shock, with AR(1) process for technology parameter.
Implied process for natural rate:

Ty — p = po(TTi—1— p) — o, (1 — Pa)EL




1.4. Equilibrium under an Exogenous Money Supply

We assume an éxogenous path for the growth rate of the money supply
Amy = p,, Amy_1 + &) (1.10)

where p,, € [0,1)and {=]"} is white noise. In addition we assume

Aay = p, Nay_y + &}

where p, € [0,1)and {ef}is white noise. Hence, 77 = p + 010, p,Aay.
We rewrite the money market equilibrium condition in terms of the output
gap, as follows:

Yo =1 T =My — P — Yy = MPY, (1.11)
Combining (1.11) into (1.7) we obtain:
1 ~ - 1 1
L+ — ) =By} + — mpye + — E{men} +v.0,00 (1.12)
on on o
Furthermore, we have
mpy;_1 = mpy, + 7 — Dy + 10, Aay (1.13)

Hence, the equilibrium dynamics are described by the dynamical system made
up of equations (1.6), (1.12), and (1.13), which can be written as follows

.gt Et{§t+1} Am
e =Am | Edmia) | + By { Aa: } (1.14)
mpye—1 mpyy
where
1+L 0 0] 1 & ¢ 1+ 0 07"
Ay = —kK 1 0 0 8 0 ; Bum= —K L 0
0 -1 1 0 0 1 0 -1 1

The system above has one predetermined variable and two nonpredetermined
variables. Accordingly, the solution will be unique if only if Ay has two eigenval-
ues inside the unit circle and one outside.
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1.4.1. Quantitative Analysis of a Calibrated Model (Gali (2002))
e Calibration: p,, =0.5,p, =0, 0 =p=1,7=4,0=0.75
e Effects of Money Supply Shocks

e Effects of Technology Shock




1.5. Appendix: Derivation of Optimal Price Setting Rule

1.5.1. Aggregate Price Level Dynamics

The aggregate price level evolves according to

1

Po=1[0 (Py)  +(1—-0) (P))] 7 (1.15)
or, alternatively, dividing by P_1 :
1—e Pt* e
I, =60 +(1-9) (1.16)
Py
where II; = Pfﬁ -. Notice that in a steady state with zero inflation PILD‘; =1.
Log-linearization around a zero inflation (IT = 1) steady state implies:

m=(1-0) (i — pr-1) (1.17)

1.5.2. Optimal Price Setting

Let P} denote the price set by a firm that adjusts its price in period . Under the
Calvo price-setting structure P will still be effective in period ¢ with probability
0F for k =0,1,2,.... Let W,(-) represent period ¢ cost function, in nominal terms.
Thus, P will be chosen in order to maximize the current value of the expected
stream of profits generated during the life of the price:

> 6" B {Quusk (P Yerrld) = Verr(Yern(5)}
k=0
subject to the sequence of demand constraints.

Yiir(j) = (P /Pis)™ Crpr = Kfik(Pt*) (1.18)

Notice that in the problem above the expectation is conditional on P, remain-

—0o
ing effective. Q¢ 1x = G* (%> ( B ) is the stochastic discount factor.

Cy Py

2Notice that the problem above will be the same for all firms resetting prices in period t ,
and so will their choice of price P/, which explains the absence of a firm index for the latter
variable.




The optimal choice Py must satisfy the first order condition:

)
where MCn, = Wi

s Ao is the nominal marginal cost and =5 is the frictionless
optimal gross markup. More compactly,

Zek Et {Qt,t+k Yl;/ik(]Dt*) <Pt* -

k=0

€ oo
R* o c 1 ;Et {Wt’t+]€ AJCZ’L—}-IC}

0% Q, Atk YH_k(P )
where w = —.
B R 0 BulQua i Y, (7))

Letting IT; ,, = (Piik/P,), we can rewrite

k=0

- P €
> B {Qt,t+k Yil(P) <Ptt1 7 Mo MCt-‘rk)} =0 (1.19)

Letting u = log(=55) and using the fact that Qrrey = 4° (%’f’) H;tik and

1.19) around a zero inflation steady state

“SMCyy = M’CT’C log-linearization of (
yields:

—Pt-1 = 1“‘59 Zﬂ‘g EA{( pt+k_pt 1)+mct+k}
k=0

= D (89)" E{me} + (1 - g6) Z(ﬁe )" E{mer )
k=0

k=0

which can be interpreted as the sum of an

inflation catch-up” and a “markup
catch-up” terms.

More compactly:

P — Pio1 = 30 E{(pri — po)}+m+ (1 - B8) me, (1.20)
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Finally, using the fact that mec; = mc} — py + p, we can rewrite (1.20) as
p; = B0 E{pia} + (1= B0) (mc} + p)

which in turn yields:

o

pi = (1—756) Z )* Ei{md,}

k=0

1.5.3. Inflation Dynamics

Combining (1.20) and (1.17), and rearranging terms yields the inflation dynamics

equation:
Ty = ﬁ Et{ﬂt+1} -+ A ﬂ/’L\Ct (121)

— (1-9)(1-80)
where \ = Y E——
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Figure 5.3

Qgtput, Inflation, and Real Interest Rate Responses to a Policy Shock in the New Keynesian Model




s Figure 3: Dynamic Responses to a Monetary Shock
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Figure 4: Monetary Shocks and the Liquidity Effect
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