
14.461: Advanced Macroeconomics I
Suman S. Basu, MIT
(With thanks to William Hawkins, MIT)

Problem Set 5: Solutions

Question 1: Sequential Search with Separations

[1]

The formulation of this problem can take a number of di¤erent forms, depending upon whether you
assume that a worker whose job has been deswtroyed can sample a new wage immediately or has to wait for
one period. I do not mind which formulation you used, as long as your unemployment transition equation is
consistent with it.
Suppose the worker can immediately sample another job when his job is destroyed.

v(w) = max

�
w

1� �(1� s) +
�sv

1� �(1� s) ; b+ �v
�
with Ut+1 = UtF (R) + sF (R)(1� Ut)

Suppose that after a job is destroyed the worker has to wait one period in unemployment and samples wages
again the period after that.

v(w) = max

�
w

1� �(1� s) +
�s(b+ �v)

1� �(1� s) ; b+ �v
�
with Ut+1 = UtF (R) + s(1� Ut)

In these solutions I use the �rst formulation, since this is how most of you interpreted the question.
The reservation wage is given by the equations:

v = F (R)(b+ �v) +

Z 1

R

�
w

1� �(1� s) +
�sv

1� �(1� s)

�
dF (w) (1)

R

1� �(1� s) +
�sv

1� �(1� s) = b+ �v (2)

Rearranging these equations gives the expression for the reservation wage:

R =
1

1� �(1� s)F (R)

�
b(1� �(1� s)) + �(1� s)

Z 1

R

wdF (w)

�
which can be rewritten:

R� b = �(1� s)
1� �(1� s)

�Z 1

R

(w �R)dF (w)
�

(3)

This depends upon the distribution of wages but not upon time per se. Assuming that the distribution of
wages is stationary, the reservation wage of the individual, R, is constant over time.

[2]

The law of motion for unemployment is:

Ut+1 = UtF (R) + sF (R)(1� Ut)

which converges in steady state to:

U =
sF (R)

1� F (R) + sF (R) (4)
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[3]

De�ne:

g(R) =
�(1� s)

1� �(1� s)

�Z 1

R

(w �R)dF (w)
�

We can derive that:

g0(R) = � �(1� s)
1� �(1� s) (1� F (R)) < 0

Keep this in mind.
Now de�ne the function �(b) = R� b� g(R) = 0. By the Implicit Function Theorem:

dR

db
= � d�=db

d�=dR
=

1

1� g0(R) =
1

1 + �(1�s)
1��(1�s) (1� F (R))

> 0

Therefore the reservation wage increases in response to a rise in unemployment bene�ts.
What happens to unemployment? We know that F (R) is monotonic in R so we can take the derivative

of U with respect to the former:

dU

dF (R)
=

s

[1� F (R) + sF (R)]2
> 0

So unemployment also increases.

[4]

Rewrite (3) as:

(1� �(1� s))(R� b) = �(1� s)
�Z 1

R

(w �R)dF (w)
�

Taking the derivative with respect to s:

dR

ds
=

��
1� �(1� s)F (R)

�Z 1

R

(w �R)dF (w)
�
< 0

The reservation wage declines.
The e¤ect on unemployment is captured by the following expression:

dU

ds
=

sf(R)dRds + F (R)(1� F (R))
[1� F (R) + sF (R)]2

=

��sf(R)
1��(1�s)F (R)

�R1
R
(w �R)dF (w)

�
+ F (R)(1� F (R))

[1� F (R) + sF (R)]2
7 0

The sign is ambiguous. The rise in s reduces the reservation wage, which would tend to exert downward
pressure upon unemployment because people are less choosy in picking jobs, but a rise in separations directly
contributes to the unemployment pool.

[5]

We can rewrite equation (3) in the following form:

R� b = �(1� s)(Ew � b) + �(1� s)
Z R

0

F (w)dw

A shift to a new distribution eF (w), which is a mean preserving spread of F (w), entails R R
0
eF (w)dw >R R

0
F (w)dw. Then the reservation wage increases. Note that the e¤ect upon unemployment is ambiguous

because the cdf F (R) will be changing.
A shift to a distribution that second order stochastically dominates F (w) will be ambiguous in its e¤ect

upon the reservation wage and unemployment. The expected wage Ew may now rise, but the integral on
the right hand side will shrink.
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Question 2: Modi�ed Diamond Coconut Model

We use the same method as in Daron�s lecture notes. Di¤erent to the lecture notes, however, the value of
the agents with a coconut will now be indexed by the size of the coconut in their possession. We may write
the steady state continuous time Bellman equation for coconut holders:

rV E(q) = b(e)
�
q + V u � V E(q)

�
(5)

() V E(q) =
b(e) [q + V u]

r + b(e)
(6)

The last expression shows that V E(q) is increasing in q.
The dynamic programming equation for agents without a coconut is:

rV u = max
p(e;q)

(
a

Z q

q

p(e; q)
�
V E(q)� V u � c

�
dG(q)

)

= a

Z q

q

max
�
V E(q)� V u � c; 0

	
dG(q) (7)

Given the monotonicity of V E(q)� V u � c (this is true from (6)), the optimal policy will take the form of a
reservation coconut size cuto¤, i.e.

p(e; q) = 1 for all q � q�

= 0 otherwise

Then we can rewrite (7) as

rV u = a

Z q

q�

�
V E(q)� V u � c

�
dG(q) (8)

where
V E(q�)� V u � c = 0 (9)

We want to characterise q� as a function of the fraction of agents with a coconut. Substitute (6) into (8)
to solve for V u:

V u =
ab(e)

R q
q�
qdG(q)� ac(1�G(q�))(r + b(e))
r [r + b(e) + a(1�G(q�))] (10)

Use (6) to write q� as a function of V u:

q� = V u
r

b(e)
+ c

b(e) + r

b(e)
(11)

Substitute (10) into (11) and solve for q�:

q� =
a
R q
q�
qdG(q) + c

b(e) (r + b(e))
2

r + b(e) + a(1�G(q�)) (12)

This is the expression required.
Now we want to determine the relationship between e and the collection decision consistent with steady

state. We have the transition equation:

�
e = a(1� e)(1�G(q�))� b(e)e (13)

which yields the relationship in steady state:

e =
a(1�G(q�))

b(e) + a(1�G(q�)) (14)
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To determine whether multiple equilibria are possible, we follow the approach in the lecture notes and
�nd the slopes of the curves (12) and (14). Implicitly di¤erentiating (12) we obtain:

dq�

de

����
V E(q�)=V u+c

= �
b0(e)

�
q� � c

�
1�

�
r
b(e)

�2��
r + b(e) + a(1�G(q�)) < 0

We can sign this expression if we assume that the value of agents who do not hold coconuts, V u, is positive.
This implies that

rV u = b(e)q� � (b(e) + r)c > 0

() q� > c
b(e) + r

b(e)
= c

b(e)2 + rb(e)

b(e)2
> c

b(e)2 � r2
b(e)2

which, along with b0(e) > 0, implies the sign above. The curve is downward sloping in (e; q�) space.
Implicitly di¤erentiating (14):

de

dq

���� �
e=0

=
�a(1� e)G0(q�)

b(e) + eb0(e) + a(1�G(q�)) < 0

where I have assumed that G(q) is di¤erentiable at q�. This locus is also downward sloping in the (e; q�)
space.
Therefore there may exist more than one steady state equilibrium if the two curves intersect at more

than one point. Note that q� = q, e = 0 is a steady state equilibrium (it is also clearly Pareto-dominated by
any other steady state equilibrium with positive activity, if such an equilibrium exists). Additional equilibria
will exist if the curves slope appropriately. See the curves drawn in recitation.

How are the externalities in this economy di¤erent from those in Diamond�s original model? The thick
market nature of the externalities, b0(e) > 0, is very similar between the two models. The more coconut
holders there are, the more likely someone is to get a match and trade, and so the lower q� they are willing
to accept (corresponding to the higher c� in the standard Diamond model). But in a sense, there is a
subtle di¤erence vis-à-vis the standard model. After collecting a coconut in the standard Diamond model,
all coconut holders are identical. The entry of an extra trader a¤ects their value function in the same way.
Here, after collecting the coconut the holders are di¤erent and the value functions V E(q) are indexed by q.
The entry of an extra coconut holder a¤ects di¤erent people�s values in a di¤erent way. In particular, the
person with the biggest coconut is willing to pay the most to have an extra trader.
In terms of the distance of the decentralized equilibrium from the social optimum, the marginal social

value of the extra trader in the standard Diamond model is the same across coconut holders, but in this
model it is the maximum of the marginal private valuations (of �e) across all agents.
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Question 3: Leftovers from Class

[1]

Proposition: Let �R such that
R1
�R+(1��)
 dG (x) = 1, then all active �rms o¤ering w = R for all

R 2
�
0; �R

�
can be supported as a Nash equilibrium.

Proof:
By construction.
The condition

R1
�R+(1��)
 dG (x) = 1 ensures that there is a measure 1 of �rms willing to o¤er the wage

R. This means that the allocation whereby all �rms post R, and all workers accept R and obtain the job
with probability 1, is feasible for all R 2

�
0; �R

�
. Therefore, we can restrict attention to this class of Nash

equilibria.
For the proof, it is su¢ cient to demonstrate that a Nash equilibrium can be constructed. In fact, it is

clear that the following is a Nash equilibrium:

� Workers accept wages greater than or equal to R:

a (w) = 1 if w � R
= 0 otherwise

� Firms post vacancies if their productivity is at least �R+ (1� �)
 and o¤er wages of R.

Given workers�behaviour, �rms are acting optimally and vice versa. Remember that in a Nash equilibrium
we hold the other players�strategies �xed at the NE strategy when we consider deviations. Of course, if
the equilibrium is not subgame perfect then the Nash equilibrium may be supported by non-credible o¤-
equilibrium threats. In addition, note that in this problem the �rms have the option of posting a wage or
not posting at all.
If you consider worker deviations but restrict the deviations to comprise strategies which preserve a

reservation wage structure, you may wish to address the question of whether the worker could do better by
following non-reservation wage strategies. In this case, the worker cannot, because in the lecture notes we used
the dynamic optimization machinery to prove that the optimal strategy will take the form of a reservation
wage rule. Therefore, restricting attention to deviations that preserve a reservation wage structure is not
incorrect.

[2]

There are several ways in which to set up the answer to this question. I discuss three methods.

Method 1:
Write out the full system:

(i) Equilibrium equation:

x� =
q(1� �)�x+ p��x+ (r + s) (b� 
)
r + s+ q(1� �)�� + p���

() (r + s)(x� � (b� 
)) = [q(1� �) + p�][�x� x���] (15)

(ii) Free entry:

0 = �
 + (1� �)q�x� (b� 
)(1� �)q�
�

r + s+ q(1� �)�� + p���

() 
(r + s) = q(1� �)[�x� b��]� p�
�� (16)

(iii) Unemployment at steady state:

U =
sL

s+ p��
() U(s+ p��) = sL (17)

5



(iv) Vacancies at steady state:

V =
sN

s+ q��
() V (s+ q��) = sN (18)

(v) Matching �ow rate for workers:

p =
M(U; V )

U
(19)

(vi) Matching �ow rate for vacancies:

q =
M(U; V )

V
(20)

This system determines (x�; U; V; p; q).
The method of solution is as follows. Substitute (ii) into (i). Then take total di¤erentials of all equations,

using a CRS matching function of the form M(U; V ) = U�V 1��. I illustrate for the comparative statics
with respect to b.

(r + s)(dx� � db) = dq(1� �)��(b� x�)� q(1� �)f(x�)dx�(b� x�) + q(1� �)��(db� dx�) (21)

+dp�(�x+ ��(
 � x�)) + p�(�x�f(x�)dx� � f(x�)dx�(
 � x�)� ��dx�)

U(dp�� � pf(x�)dx�) + dU(s+ p��) = 0 (22)

V (dq�� � qf(x�)dx�) + dV (s+ q��) = 0 (23)

Udp = (1� �)(qdV � pdU) (24)

V dq = �(pdU � qdV ) (25)

Equations (24) and (25) are used to express dp and dq as functions of dV and dU . These are used to
substitute out dp and dq from equations (22) and (23), which are then rearranged and solved simultaneously
to give dV and dU as functions of dx� only. These expressions are substituted into equations (24) and (25)
and then the expressions for dp and dq are substituted into equation (21). We divide both sided by db and
rearrange terms. This gives us dx�

db .

Method 2:
Use the CRS property of the matching function to de�ne � = V

U . Then q = q(�) and p = �q(�). The
whole system may be written as:

(i) Usual equilibrium condition plus free entry combined:

(r + s)(x� � b) = q(�) [(1� �)��(b� x�) + � (�x+ ��(
 � x�))] (26)

(ii) Transition equations combined:

�
s+ q(�)��

s+ �q(�)��
=
N

L
(27)

Again take the total di¤erential of the two equations. This time there will only be terms in dx�, db and
d�. Substitute out the d� terms from the �rst equation by using the second equation.

Method 3:
As above, but plot the equations (26) and (27) in the (�; x�) space. Then deduce comparative statics

from shifts in curves.
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[3]

We are asked to consider e¢ ciency. The planner�s problem is:

max

Z 1

0

e�rt
�Z 1

~x�
xn (x) dF (x) + bU � 
V

�
subject to Z 1

~x�
n (x) dF (x) + V = NZ 1

~x�
n (x) dF (x) + U = L

_n (x) = a (x) f (x)M (U; V )� sn (x)
The �rst of the constraints states that the number of �rms is equal to the integral of the number of �rms
in matches of di¤erent productivities plus the number of unmatched �rms. The second is the adding up
constraint for labor (L cannot be a¤ected by the planner). The third constraint relates the change in the
number of �rms with a match of productivity x to the rate of formation of these matches less their destruction
rate.
Form the Hamiltonian:

H =

�Z 1

~x�
xn (x) dF (x) + bU � 
V

�
+�

�
N � V �

Z 1

~x�
n (x) dF (x)

�
+�

�
L� U �

Z 1

~x�
n (x) dF (x)

�
+

Z 1

�1
�(x) [a (x) f (x)M (U; V )� sn (x)] dx

The control variables are ~x�, V and U , while the state variables are fn (x)gx. Therefore we have the necessary
FOCs:

imposing steady state. Rearranging the expressions obtained we derive:

�+ � = ~x�


 + � =

Z 1

�1
�(x)a (x) f (x)MV (U; V ) dx

�� b =

Z 1

�1
�(x)a (x) f (x)MU (U; V ) dx

_
~x = (�+ �)e�� + (r + s)�(x)

where
_
~x �

R1
~x�
xdF (x) and e�� � 1 � F (~x�). Note that the last FOC immediately implies that �(x) � � is

constant, while adding the second and third and eliminating �+ � from the �rst implies that:

� =
~x� � (b� 
)

�

where

� = [MU (U; V ) +MV (U; V )]

Z 1

�1
a (x) f (x) dx

Substituting this into the fourth FOC and rearranging gives that:

~x� =

_
~x�+ (r + s)(b� 
)

r + s+ e��
For the decentralized equilibrium to be e¢ cient, the decentralized equilibrium outcome should coincide with
the planner�s choice of the cuto¤ ~x� and V (equivalently, U). This occurs i¤

_
~x�+ (r + s)(b� 
)

r + s+ e��� =
x�p� (b� 
)�p��

r + s+ q(1� �)�� + p���
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We also impose free entry rJV = 0 in the decentralized equilibrium and this must coincide with the planner�s
choice:

0 = �
 +
(1� �)M(U;V )

V

_
~x � (b� 
)(1� �)M(U;V )

V
e��

r + s+ M(U;V )
V (1� �)e�� + M(U;V )

U �e��
As before, one can check that thr Hosios condition is su¢ cient for this.

Question 4: Limits of Search Economies

I enclose two treatments here. The �rst follows the procedure in the lecture notes. The second was part of
last year�s problem set solution and provides a more detailed analysis.

Treatment 1:
� may be easily confused with the other use given to this symbol in the lecture notes (�� = 1 � F (x�))

so replace it with '. The system may be rewritten:

M(U; V ) = 'm(U; V )

p0 =
M(U; V )

U
= 'p; q0 =

M(U; V )

V
= 'q

It remains to rewrite all the equilibrium equations derived in the lecture notes by replacing p and q throughout
with p0 and q0 respectively. This characterizes the equilibrium. In particular:

x� =
[q(1� �) + p�] �x+ (r+s)(b�
)

'
r+s
' + [q(1� �) + p�]��

This yields

lim
'!1

x� =
[q(1� �) + p�] �x
[q(1� �) + p�]�� =

�x

��

=

R1
x�
xdF (x)

1� F (x�) = E[xjx � x
�]

But x� ! E[xjx � x�] is only true if x� ! xsup, the highest value in the support of x. Thus exactly as in
competitive equilibrium, only the most productive jobs are active in equilibrium.
What happens to wages? It is di¢ cult to say using only the analysis above.
The model with free entry is easier. We know that rJU + rJV = x! xsup, and �rms make zero pro�ts

so the wages of workers also converges to the value of the highest productivity.

Treatment 2:
This is a more detailed treatment. Some comments to understand it better:

� In the case with �xed N and L, the analysis is complicated because we need to identify the short side
of the market. The �ow rate of matches is assumed to tend to 1 as search frictions disappear, but in
reality it will tend to min fU; V g and this will some of the complications you see.

� The remaining problem with the above approach is that �� ! 0 as x� ! xsup. This means that
l�Hôpital�s Rule must be applied.

� The problem can be written in terms of labor market tightness once we assume constant returns to
scale (CRS).

� Note that the free entry case can be solved quite easily; the complications arise only for the case
without free entry. (It is solved using both di¢ cult and easy methods for free entry).

� You will not be expected to do this in the exam (!). I think this turned out to be harder than intended.
However, I left it in the problem set because I think it is Daron�s intention that you think carefully
about these limits. I do not deduct marks for not including all of what is presented below.
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Question 5: Search E¤ort
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